Difference between revisions of "Part:BBa K3734019"
Line 42: | Line 42: | ||
<div class="pageContent-main__textBox"> | <div class="pageContent-main__textBox"> | ||
<!--all the content must included in this div--> | <!--all the content must included in this div--> | ||
− | <p>After TetR binds to TRE, phosphorylation ELK activates downstream reporting gene mCherry expression, and we observe the expression with laser confocal microscope.</p | + | <p>After TetR binds to TRE, phosphorylation ELK activates downstream reporting gene mCherry expression, and we observe the expression with laser confocal microscope.</p> |
<p>We also use ERK antibodies to detect phosphorylation of ERK1/ERK2 in the phosphorylation pathway through Western Blot. | <p>We also use ERK antibodies to detect phosphorylation of ERK1/ERK2 in the phosphorylation pathway through Western Blot. | ||
</p> | </p> | ||
Line 56: | Line 56: | ||
<img width="400px" src="https://2021.igem.org/wiki/images/5/54/T--CSU_CHINA--tupian14.png"></p> | <img width="400px" src="https://2021.igem.org/wiki/images/5/54/T--CSU_CHINA--tupian14.png"></p> | ||
<!--put image's url here--> | <!--put image's url here--> | ||
+ | <br> | ||
<p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.2 Under Laser confocal microscopy, fluorescence of mCherry expression downstream of Tet-Off system</p> | <p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.2 Under Laser confocal microscopy, fluorescence of mCherry expression downstream of Tet-Off system</p> | ||
<p style="text-align: center;"> | <p style="text-align: center;"> | ||
<img width="400px" src="https://2021.igem.org/wiki/images/1/1f/T--CSU_CHINA--tupian16.png"></p> | <img width="400px" src="https://2021.igem.org/wiki/images/1/1f/T--CSU_CHINA--tupian16.png"></p> | ||
<!--put image's url here--> | <!--put image's url here--> | ||
+ | <br> | ||
<p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.3 ERK phosphorylation changes with different insulin treatment</p> | <p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.3 ERK phosphorylation changes with different insulin treatment</p> | ||
<p style="text-align: center;"> | <p style="text-align: center;"> | ||
<img width="400px" src="https://2021.igem.org/wiki/images/5/54/T--CSU_CHINA--tupian49.png"></p> | <img width="400px" src="https://2021.igem.org/wiki/images/5/54/T--CSU_CHINA--tupian49.png"></p> | ||
<!--put image's url here--> | <!--put image's url here--> | ||
+ | <br> | ||
<p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.4 ERK phosphorylation changes with different insulin treatment</p> | <p style="width: 80%;text-align:center;font-size: .9rem; margin: -1rem auto 1rem auto; color: #888;">Fig.4 ERK phosphorylation changes with different insulin treatment</p> | ||
</div> | </div> |
Revision as of 12:05, 20 October 2021
TetR-ELK
TetR is a kind of protein that can find and combined with TRE DNA structure domain.ELK is a kind of protein that can activate downstream gene expression after being regulated by phosphorylation
TetR-ELK
TetR can recognize and combine with TRE, it is a important part of Tet-off system. Without tetracycline, TetR can combine with TRE. With the presence of tetracycline, the combination of TetR and TRE will be blocked and the Tet-off system will be shut down. ELK is generally dormant, when INSR receive insulin and activate MAPK, ELK will be phophated and activated, then ELK is able activate expression of target gene downstream TRE.
1.Pattern diagram
Fig.1 The model diagram TetR-ELK
2.Experiment
2.1 Method
After TetR binds to TRE, phosphorylation ELK activates downstream reporting gene mCherry expression, and we observe the expression with laser confocal microscope.
We also use ERK antibodies to detect phosphorylation of ERK1/ERK2 in the phosphorylation pathway through Western Blot.
2.2 Result
Fig.2 Under Laser confocal microscopy, fluorescence of mCherry expression downstream of Tet-Off system
Fig.3 ERK phosphorylation changes with different insulin treatment
Fig.4 ERK phosphorylation changes with different insulin treatment
3.Caution
Despite the length and the complication of phosphorylation pathway, the phosphorylation pathway of protein is a very short process, it is usually completed within minutes even seconds. The time of cracking the cells and collecting protein must be controlled precisely when detecting
Reference:
[1]Haifeng Ye, Mingqi Xie, Shuai Xue.Self-adjusting synthetic gene circuit for correcting insulin resistance[J].Nat Biomed Eng.2017 Jan;1(1):0005.
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 621
Illegal NgoMIV site found at 759
Illegal AgeI site found at 999 - 1000COMPATIBLE WITH RFC[1000]