Difference between revisions of "Part:BBa K3798005"

Line 18: Line 18:
 
As can see above aptamer 3 and 4 has the best binding efficiency with Aptamer 3 having a higher binding ability (the remaining ion concentration of Aptamer 3 is 86ug/L lower than that of Aptamer 4) and Aptamer 4 having better stability when binding (smaller error bounds).  
 
As can see above aptamer 3 and 4 has the best binding efficiency with Aptamer 3 having a higher binding ability (the remaining ion concentration of Aptamer 3 is 86ug/L lower than that of Aptamer 4) and Aptamer 4 having better stability when binding (smaller error bounds).  
 
Because having 90% of binding efficiency is enough for our use and having higher binding stability means that the treated effluents would have a more consistent results that is essential for industrial use, Aptamer 4 was chosen to be subject of further experiments.
 
Because having 90% of binding efficiency is enough for our use and having higher binding stability means that the treated effluents would have a more consistent results that is essential for industrial use, Aptamer 4 was chosen to be subject of further experiments.
 +
 +
===Reference===
 +
1. Hall Sedlak, R., Hnilova, M., Grosh, C., Fong, H., Baneyx, F., & Schwartz, D. et al. (2012). Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance. Applied And Environmental Microbiology, 78(7), 2289-2296. doi: 10.1128/aem.06823-11
 +
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  
 
===Functional Parameters===
 
===Functional Parameters===
 
<partinfo>BBa_K3798005 parameters</partinfo>
 
<partinfo>BBa_K3798005 parameters</partinfo>
 
<!-- -->
 
<!-- -->

Revision as of 13:33, 19 October 2021


ssDNA, our best aptamer for Ag+ ion 2

Silver is one of the most wasted precious metals that can be found in effluents, streams and even food. As our project is to develop a precious metal recycling platform, we chose Ag+ as the demonstration ion of this phase of the project. Aptamers are oligonucleotides that can bind targeted molecules with its secondary structures, in our project, Ag+ ion. BBa_K3798005 is a Ag+ aptamer obtained from a previous paper[1], and this particular aptamer had shown outstanding abilities efficiency and satbility in Ag+ ion capture.

Usage and Biology

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Characterization

Binding efficiency and stability

T--SHSBNU China--silver ion 1.png

Fig.1 Remaining Ag+ ion concentration of the solution after treated by different types of aptamers.

As can see above aptamer 3 and 4 has the best binding efficiency with Aptamer 3 having a higher binding ability (the remaining ion concentration of Aptamer 3 is 86ug/L lower than that of Aptamer 4) and Aptamer 4 having better stability when binding (smaller error bounds). Because having 90% of binding efficiency is enough for our use and having higher binding stability means that the treated effluents would have a more consistent results that is essential for industrial use, Aptamer 4 was chosen to be subject of further experiments.

Reference

1. Hall Sedlak, R., Hnilova, M., Grosh, C., Fong, H., Baneyx, F., & Schwartz, D. et al. (2012). Engineered Escherichia coli Silver-Binding Periplasmic Protein That Promotes Silver Tolerance. Applied And Environmental Microbiology, 78(7), 2289-2296. doi: 10.1128/aem.06823-11