Difference between revisions of "Part:BBa K4040018"
(→References) |
|||
Line 42: | Line 42: | ||
[1] Bhattacharyya S, Zagórska A, Lew ED, Shrestha B, Rothlin CV, Naughton J, Diamond MS, Lemke G, Young JA. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013 Aug 14;14(2):136-47. | [1] Bhattacharyya S, Zagórska A, Lew ED, Shrestha B, Rothlin CV, Naughton J, Diamond MS, Lemke G, Young JA. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013 Aug 14;14(2):136-47. | ||
− | |||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
<!-- --> | <!-- --> | ||
+ | |||
===Sequence and Features=== | ===Sequence and Features=== | ||
<partinfo>BBa_K4040018 SequenceAndFeatures</partinfo> | <partinfo>BBa_K4040018 SequenceAndFeatures</partinfo> |
Revision as of 11:11, 19 October 2021
Synthetic Receptor CAR-MERTK
Background and structure of the CAR-MERTK
Previous studies have shown that the MER tyrosine kinase (MERTK) expressed on the cytomembrane of the macrophages can not only mediate the phagocytosis of apoptotic cells and virus particles, but at the same time reduce the secretion of cytokines[1]. Therefore, we designed a chimeric receptor, CAR-MERTK, to redirect macrophage MERTK signaling to engulf viruses while circumventing significant cytokines release. Our CAR-MERTK consists of three domains, an αS-scFv extracellular domain targeting the spike (S) protein of the SARS-CoV-2, a CD8 hinge and transmembrane domain as the scaffold, and an intracellular domain derived from MERTK to acquire the magical function of the MERTK. Also, there is a Myc tag gene making the lentiviral transcription efficiency detectable.
The function of CAR-MERTK
The functions of a receptor depend highly on its structure. Since the CAR-MERTK is adapted from both MERTK and CAR, we hypothesize that the receptor can not only recognize the SARS-CoV-2 in a targeted manner but also engulf the SARS-CoV-2 with low inflammatory factors secretion.
To assay the library of CAR-Ps, previous study has introduced each CAR-P into J774A.1 murine macrophages by lentiviral infection. As an engulfment target, they used 5 mm diameter silica beads coated with a supported lipid bilayer. A His8-tagged extracellular domain of CD19 was bound to a NiNTA-lipid incorporated into the supported lipid bilayers. Macrophages expressing CAR-PBai1, CAR-PMerTK, and the adhesion-only CAR-PGFP did not bind the CD19 beads even though these CAR-Ps are present at the cell surface (Figure 2, 3)[6].
Results of our project
1.Validation of the CAR-MERTK expression on the macrophages
We choose the lentiviral technology to transfect CAR-MERTK to human macrophages THP-1 cells. The CAR-MERTK gene was inserted to a third-generation lentiviral vector in which the CMV promotor was replaced by the EF-1α promoter to enhance the expression efficiency. We next used flow cytometry to confirm the expression of the CAR-MERTK on the macrophages by detecting the Myc tag. The results showed that the lentiviral vector transfected THP-1 cells with high efficiency(Figure 4).
2.CAR-MERK macrophages can engulf SARS-CoV-2 S pseudotyped virions
After confirming the expression of CAR-MERTK on the macrophages, we next tested whether the CAR-MERTK macrophages would perform the phagocytosis function as we expected. We first cocultured the CAR-MERTK macrophages with the SARS-CoV-2 S pseudotyped viruses, which could be operated in class-2 biosafety cabinets. Then, the level of S protein in macrophages were measured through flow cytometry to indicate the amount of pseudotyped virions engulfed. As is shown in the diagram(Figure 5), the phagocytosis of the four different CAR-macrophages, including the CAR-MERTK, CAR-MEGF10, CAR-γ , CAR-ζ , but not the truncated CAR (CARΔ), is significantly higher than the UTD group. The results suggested that intracellular domain played an important role in phagocytosis. The low phagocytic score of the CARΔ demonstrated that the phagocytosis was not merely mediated by the affinity of αS -scFV.
3.The inflammatory reaction can be blocked when the CAR-MERTK macrophages engulf the SARS-CoV-2 S pseudotyped virions
CAR-MERTK macrophages do not kill the S protein expressing cells, alleviating the inflammatory damage to the body: From the previous study we knew that the S protein would be expressed on the surface of the alveolar epithelial cell after infected by the SARS-CoV-2. There would be extra damage if the CAR-MERTK macrophages still attack the S protein expressing alveolar epithelial cells, aggravating the lung injury. But as mentioned before, the CAR-macrophages are expected to engulf the SARS-CoV-2 in a silent and less harmful way. To demonstrate, we first constructed a targeted cell expressing S protein called Spike-bearing 293 cells through the lentiviral transfection. Then, we cocultured the CAR-MERTK macrophages with the Spike-bearing 293 cells and measured phagocytosis. The results indicated that CAR-MERTK macrophages would not damage the Spike-bearing 293 cells and thus proved the potential safety of our CAR-MERTK macrophages(Figure 6).
4.CAR-MERTK macrophages engulfed the SARS-CoV-2 S pseudotyped virions without increasing inflammatory release
Cytokine release syndrome (CRS) is an important cause of death in severe Covid-19 patients and is a common adverse effect in CAR-T therapies. So, our next goal was to confirm that the CAR-MERTK macrophages can engulf the SARS-CoV-2 viruses in a low inflammatory manner. As the results showed, the cytokines released, including the GM-CSF, IL-1β, IL-2, IL-4, IL-5, IL-8, IL-10, and IFN-γ, were not significant in the CAR-MERTK macrophages group(Figure 7).
The above data demonstrated that CARMERTK cells can direct anti-virus phagocytic activity without induction of pro-inflammatory cytokines, we therefore sought to translate this platform to primary human macrophages. Primary human macrophages were generated from peripheral blood CD14+ monocytes and then engineered with MERTK CAR or CD3z CAR, termed as CARMERTK-M cells or CARz-M cells. Similar to the THP-1 cells, the resultant primary human CARMERTK-M cells demonstrated no cell killing effect but a strong antigen-specific phagocytosis of SARS-COV-2 virions, and this process did not induction of pro-inflammatory cytokines (Figure 8). Moreover, adding anti-S scFv notably inhibit the phagocytosis effect, suggest that the biological effect of CARMERTK-M cells is antigen dependent[2].
References
[1] Bhattacharyya S, Zagórska A, Lew ED, Shrestha B, Rothlin CV, Naughton J, Diamond MS, Lemke G, Young JA. Enveloped viruses disable innate immune responses in dendritic cells by direct activation of TAM receptors. Cell Host Microbe. 2013 Aug 14;14(2):136-47.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 2762
Illegal XhoI site found at 344 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 952
Illegal NgoMIV site found at 1288
Illegal NgoMIV site found at 1825
Illegal NgoMIV site found at 1891
Illegal NgoMIV site found at 2050
Illegal AgeI site found at 440 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1168
Illegal BsaI.rc site found at 1432
Illegal BsaI.rc site found at 2113
Illegal BsaI.rc site found at 2587
Illegal SapI.rc site found at 1989
Illegal SapI.rc site found at 2178