Difference between revisions of "Part:BBa K3798005"
Line 4: | Line 4: | ||
Silver is one of the most wasted precious metals that can be found in effluents, streams and even food. As our project is to develop a precious metal recycling platform, we chose Ag+ as the demonstration ion of this phase of the project. Aptamers are oligonucleotides that can bind targeted molecules with its secondary structures, in our project, Ag+ ion. BBa_K3798005 is a Ag+ aptamer obtained from a previous paper[1], and this particular aptamer had shown outstanding abilities efficiency and satbility in Ag+ ion capture. | Silver is one of the most wasted precious metals that can be found in effluents, streams and even food. As our project is to develop a precious metal recycling platform, we chose Ag+ as the demonstration ion of this phase of the project. Aptamers are oligonucleotides that can bind targeted molecules with its secondary structures, in our project, Ag+ ion. BBa_K3798005 is a Ag+ aptamer obtained from a previous paper[1], and this particular aptamer had shown outstanding abilities efficiency and satbility in Ag+ ion capture. | ||
− | |||
===Characterization=== | ===Characterization=== | ||
==Binding efficiency and stability== | ==Binding efficiency and stability== | ||
[[File:T--SHSBNU_China--silver ion 1.png|600px|thumb|center]] | [[File:T--SHSBNU_China--silver ion 1.png|600px|thumb|center]] | ||
<p class="figure-description"><b><center>Fig.1 Remaining Ag+ ion concentration of the solution after treated by different types of aptamers. </center></b></p > | <p class="figure-description"><b><center>Fig.1 Remaining Ag+ ion concentration of the solution after treated by different types of aptamers. </center></b></p > | ||
− | + | As can see above aptamer 3 and 4 has the best binding efficiency with Aptamer 3 having a higher binding ability (the remaining ion concentration of Aptamer 3 is 86ug/L lower than that of Aptamer 4) and Aptamer 4 having better stability when binding (lower error bound). | |
+ | Because having 90% of binding efficiency is enough for our use and having higher binding stability means that the treated effluents would have a more consistent results that is essential for industrial use, Aptamer 4 was chosen to be subject of further experiments. | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
Revision as of 11:35, 18 October 2021
ssDNA, our best aptamer for Ag+ ion 2
Silver is one of the most wasted precious metals that can be found in effluents, streams and even food. As our project is to develop a precious metal recycling platform, we chose Ag+ as the demonstration ion of this phase of the project. Aptamers are oligonucleotides that can bind targeted molecules with its secondary structures, in our project, Ag+ ion. BBa_K3798005 is a Ag+ aptamer obtained from a previous paper[1], and this particular aptamer had shown outstanding abilities efficiency and satbility in Ag+ ion capture.
Characterization
Binding efficiency and stability
As can see above aptamer 3 and 4 has the best binding efficiency with Aptamer 3 having a higher binding ability (the remaining ion concentration of Aptamer 3 is 86ug/L lower than that of Aptamer 4) and Aptamer 4 having better stability when binding (lower error bound). Because having 90% of binding efficiency is enough for our use and having higher binding stability means that the treated effluents would have a more consistent results that is essential for industrial use, Aptamer 4 was chosen to be subject of further experiments.
Usage and Biology
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]