Difference between revisions of "Part:BBa K2924016"
Line 68: | Line 68: | ||
*[1]: Toru Tobe,* Noriko Nakanishi, and Nakaba Sugimoto <i>“Activation of Motility by Sensing Short-Chain Fatty Acids via Two Steps in a Flagellar Gene Regulatory Cascade in Enterohemorrhagic Escherichia coli”</i> INFECTION AND IMMUNITY, Mar. 2011, p. 1016–1024 | *[1]: Toru Tobe,* Noriko Nakanishi, and Nakaba Sugimoto <i>“Activation of Motility by Sensing Short-Chain Fatty Acids via Two Steps in a Flagellar Gene Regulatory Cascade in Enterohemorrhagic Escherichia coli”</i> INFECTION AND IMMUNITY, Mar. 2011, p. 1016–1024 | ||
+ | |||
+ | =Thessaly 2021= | ||
+ | [[File:T--Thessaly--diagram1.png|700px|thumb|none|<i><b>Fig.1:</b>Normalized fluorescence of PFlic NOT-GATE. Measurements to test the pFlic module response to Sodium Butyrate. We expected the signal of pFlic under the lowest concentration of sodium butyrate (0,00002mM) to be the highest. Negative control: E.coli BL21 (DE3) Gold with empty vector ω2. </i>]] | ||
+ | |||
+ | [[File:T--Thessaly--diagram2.png|700px|thumb|none|<i><b>Fig.2:</b>PFlic module, level a, Normalized fluorescence. Measurements to test the pFlic module response to Sodium Butyrate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be the highest, but that didn’t happen. Negative control (C): E.coli MC1061 empty vector a1R with and without SCFAs.</i>]] | ||
+ | |||
+ | [[File:T--Thessaly--diagram3.png|700px|thumb|none|<i><b>Fig.3:</b>PFlic module Normalized fluorescence. Measurements to test the pFlic module response to Sodium Acetate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be the highest, but that didn’t happen. Negative control (C): E.coli MC1061 empty vector a1R with and without SCFAs.</i>]] | ||
+ | |||
+ | [[File:T--Thessaly--diagram4.png|700px|thumb|none|<i><b>Fig.4:</b>PFlic module, level a, Normalized fluorescence. Measurements to test the pFlic module response to Sodium Butyrate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be similar to positive control, but that didn’t happen. Negative control: E.coli MC1061 empty vector a1R with and without SCFAs. Positive control: TU with sfGFP only LacO, with and without SCFAs.</i>]] | ||
+ | |||
+ | [[File:T--Thessaly--diagram5.png|700px|thumb|none|<i><b>Fig.5:</b>PFlic module, Normalized fluorescence. Measurements to test the pFlic module response to Sodium Acetate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be similar to positive control, which did not happen. Negative control: E.coli MC1061 empty vector a1R with and without SCFAs. Positive control: TU with sfGFP only LacO, with and without SCFAs. </i>]] | ||
+ | |||
+ | |||
+ | [[File:T--Thessaly--diagram6.png|700px|thumb|none|<i><b>Fig.6:</b> PFlic module, level a, Normalized fluorescence. Measurements to test the pFlic module response to Sodium Butyrate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be similar to positive control, but that didn’t happen. Negative control: E.coli MC1061 empty vector a1R with and without SCFAs. Positive control: TU with sfGFP only LacO, with and without SCFAs.</i>]] | ||
+ | |||
+ | [[File:T--Thessaly--diagram7.png|700px|thumb|none|<i><b>Fig.7:</b> PFlic module Normalized fluorescence. Measurements to test the pFlic module response to Sodium Acetate. We expected the signal of pFlic under the highest concentrations of sodium butyrate to be similar to positive control but that didn’t happen. Negative control: E.coli MC1061 empty vector a1R with and without SCFAs. Positive control: TU with sfGFP only LacO, with and without SCFAs. </i>]] |
Revision as of 14:38, 17 October 2021
Promoter fliC from the Escherichia coli genome
Short-chain fatty acid sensitive promoter FliC
Usage and Biology
The promoter fliC was published as a sensitive promoter for short-chain fatty acids, especially for butyrate (C4:0). This promoter was isolated from the Escherichia coli wild type genome. In the wild type the short-chain fatty acids have an impact on the flagellar expression. The PfliC is repressed by leucine-responsive regulatory protein (Lrp). Butyrate can enhance the expression of the flagellar expression like leucine which is a ligand of Lrp. Difference between thus enhancers is that the promoter fliC is only sensitive for the butyrate and not for the leucine 1
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Characterization
The promoter was tested for the sensitivity to butyric acid in the culture medium by combining the promoter to an eYFP (BBa_E0030) 2 as a reporter gene in the composite part BBa_K2924017. The concentrations of butyric acid were from 0.5 mM to 20 mM.
The experiment showed that the fluorescence doesn't grow with higher concentrations of butyric acid. Surprisingly the fluorescence from the empty vector control rises with higher concentrations while the PfliC shows a falling tendency.
Thessaly 2020's Characterization
The sensitivity of pFliC in the other SCFAs: Acetate and Propionate
Aim
The Monitoring System of Amalthea comprises three separate modules. We chose to extensively characterize the Prom Module before working with it for the proof of concept. Briefly, the Prom Module is a NOT-GATE that is activated due to the absence of Short-Chain Fatty-Acids (SCFAs). Its key element is a SCFA-inducible promoter, pFliC, which is mainly activated by butyrate. While researching its properties, we realized that it was characterized for its sensitivity to butyric acid, only in a limited way.
Background
- In order to accomplish this aim, we tested pFliC using a range of concentrations spanning three orders of magnitude. Finally, we evaluated the pFliC’s function using three reporter genes, eCFP, eGFP, and sfGFP to provide a more comprehensive characterization
- We used E. coli strain MC1061, as it is the workhorse chassis for our system.
Results
eCFP
eGFP
sfGFP
Conclusion
The graphs above indicate that adding acetate and propionate can provoke the expression of the reporter genes. However, based on the concentration and the time-point that the measurement is taken, the results change. As time passes, the expression of each fluorescent protein is higher. Furthermore, there is the maximum expression of these three reporter genes when we add 2mM acetate or propionate accordingly, while it is indicated that adding increasing (20mM, 200mM) concentration of acids and, especially, acetate prevents cell growth. That may occur, due to their toxicity to the cells which may lead to unsettling results.
References
- [1]: Toru Tobe,* Noriko Nakanishi, and Nakaba Sugimoto “Activation of Motility by Sensing Short-Chain Fatty Acids via Two Steps in a Flagellar Gene Regulatory Cascade in Enterohemorrhagic Escherichia coli” INFECTION AND IMMUNITY, Mar. 2011, p. 1016–1024
Thessaly 2021