Difference between revisions of "Part:BBa K3753000"

(Characterization)
(Characterization)
Line 15: Line 15:
 
<p> </p>
 
<p> </p>
 
[[File:2-PE.png|width='100%' valign='top'| |center|thumb|550px|''<b>Fig.2</b> The 2-PE production of the recombinant strains.
 
[[File:2-PE.png|width='100%' valign='top'| |center|thumb|550px|''<b>Fig.2</b> The 2-PE production of the recombinant strains.
 +
<br>
 
After 72 hours of fermentation, 2-PE production of the wild-type of BY4741, pRS426-Petunia, pRS426-Vanda and pRS426-Rosa was tested by HPLC. Data represent means of triplicate culture±standard error.]]
 
After 72 hours of fermentation, 2-PE production of the wild-type of BY4741, pRS426-Petunia, pRS426-Vanda and pRS426-Rosa was tested by HPLC. Data represent means of triplicate culture±standard error.]]
 +
<p> </p>
 
<br>
 
<br>
 
Saccharomyces cerevisiae BY4741 contains Ehrlich pathway and other metabolic pathways to operate simultaneously to produce 2-PE, so the wild-type of BY4741 has a certain amount of 2-PE production (1.205g/L). After the introduction of heterogeneous paas gene, the 2-PE production has remarkablely increased. Among them, the production of 2-PE produced by the yeast strain which was introduced petunia-paas increased the most(1.570g/L), followed by the strain which was introduced vanda-paas (1.514g/L) and rosa-paas (1.341g/L).
 
Saccharomyces cerevisiae BY4741 contains Ehrlich pathway and other metabolic pathways to operate simultaneously to produce 2-PE, so the wild-type of BY4741 has a certain amount of 2-PE production (1.205g/L). After the introduction of heterogeneous paas gene, the 2-PE production has remarkablely increased. Among them, the production of 2-PE produced by the yeast strain which was introduced petunia-paas increased the most(1.570g/L), followed by the strain which was introduced vanda-paas (1.514g/L) and rosa-paas (1.341g/L).

Revision as of 14:28, 16 October 2021


PAAS-Petunia

Petunia hybrida hybrid phenylacetaldehyde synthase (PAAS) is capable of transforming L-phenylalanine (L-phe) into phenylacetaldehyde by oxidative decarboxylation. Subsequently, phenylacetaldehyde can be reducted into phenylethanol, which possesses elegant, fascinating and long-lasting fragrance.

Characterization


Fig.1 The growth curve of recombinant strains.


The figure above shows the changes of biomass concentration in WT, BY4741-pRS426-Petunia, BY4741-pRS426-Vanda, BY4741-pRS426-Rosa yeast over time. The OD600 of different strain cultures is measured at the designated time points (0h, 24h,48h,72h). The result shows that the growth trend of the recombinant strain is basically the same as the wild-type strain, indicating that the introduction of heterogeneous gene has no significant effect on the growth of yeast.

Fig.2 The 2-PE production of the recombinant strains.
After 72 hours of fermentation, 2-PE production of the wild-type of BY4741, pRS426-Petunia, pRS426-Vanda and pRS426-Rosa was tested by HPLC. Data represent means of triplicate culture±standard error.


Saccharomyces cerevisiae BY4741 contains Ehrlich pathway and other metabolic pathways to operate simultaneously to produce 2-PE, so the wild-type of BY4741 has a certain amount of 2-PE production (1.205g/L). After the introduction of heterogeneous paas gene, the 2-PE production has remarkablely increased. Among them, the production of 2-PE produced by the yeast strain which was introduced petunia-paas increased the most(1.570g/L), followed by the strain which was introduced vanda-paas (1.514g/L) and rosa-paas (1.341g/L).


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal XbaI site found at 60
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal XbaI site found at 60
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal XbaI site found at 60
  • 1000
    COMPATIBLE WITH RFC[1000]