Difference between revisions of "Part:BBa K4040019"
(→A Broad-spectrum neutralizing antibody) |
|||
Line 16: | Line 16: | ||
<div><ul> | <div><ul> | ||
<center> | <center> | ||
− | <li style="display: inline-block;"> [[File:T--NMU_China--CR3022bindstoRBD.jpeg|thumb|none|250px|<b>Figure 1:</b> Crystal structure of SARS-CoV receptor binding domain in complex with human antibody CR3022. The structure has been resolved <html><a href="# | + | <li style="display: inline-block;"> [[File:T--NMU_China--CR3022bindstoRBD.jpeg|thumb|none|250px|<b>Figure 1:</b> Crystal structure of SARS-CoV receptor binding domain in complex with human antibody CR3022. The structure has been resolved <html><a href="#4">[4]</a></html> available in PDB with accession number 7JN5.]] </li> |
</center> | </center> | ||
</ul></div> | </ul></div> |
Revision as of 02:38, 28 September 2021
CR3022 scFv
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 352
Illegal NgoMIV site found at 688 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 568
Usage and Biology
CR3022 is a SARS-CoV neutralizing antibody to a highly conserved epitope on the receptor-binding domain (RBD) on the spike protein that is able to cross-react with SARS-CoV-2. A single-chain variable fragment (scFv) is not actually a fragment of an antibody, but instead is a fusion protein of the variable regions of the heavy (VH) and light chains (VL) of immunoglobulins, connected with a short linker peptide of ten to about 25 amino acids. The linker is usually rich in glycine for flexibility, as well as serine or threonine for solubility, and can either connect the N-terminus of the VH with the C-terminus of the VL or vice versa. This protein retains the specificity of the original immunoglobulin, despite the removal of the constant regions and the introduction of the linker. These molecules were created to facilitate phage display, where it is highly convenient to express the antigen-binding domain as a single peptide. As an alternative, scFv can be created directly from subcloned heavy and light chains derived from a hybridoma. ScFvs have many uses, e.g., flow cytometry, immunohistochemistry, and as antigen-binding domains of artificial T cell receptors (chimeric antigen receptor). CR3022 scFv is an scFv protein derived from the antibody CR3022.
Experimental results
A Broad-spectrum neutralizing antibody
CR3022 was previously isolated from a SARS survivor and neutralizes SARS-CoV [1], CR3022 was recently found to also be a cross-reactive antibody that can bind to both SARS-CoV-2 and SARS-CoV [2]. Recent crystal structure demonstrated that CR3022 targets a highly conserved cryptic epitope on the receptor binding domain (RBD) of the S protein [3]. The CR3022 epitope is exposed only when the RBD is in the “up” but not the “down” conformation on the S protein. A few SARS-CoV-2 antibodies from COVID-19 patients have also recently been shown to target the CR3022 epitope, suggesting that it is an important site of vulnerability for the antibody response in SARS-CoV-2 infection. Out of 28 residues in the CR3022 epitope, 24 are conserved between SARS-CoV-2 and SARS-CoV, explaining the cross-reactive binding of CR3022. However, CR3022 has a higher affinity to SARS-CoV than to SARS-CoV-2 (>100-fold difference), and can neutralize SARS-CoV, but not SARS-CoV-2, in a live virus neutralization assay [3]. Therefore, CR3022 provides a good case study to probe antigenic variation between SARS-CoV-2 and SARS-CoV and the effects on antibody cross-neutralization.
Binding to RBD on the spike protein
Used for a CAR
References
- ter Meulen J, van den Brink EN, Poon LL, Marissen WE, Leung CS, Cox F, Cheung CY, Bakker AQ, Bogaards JA, van Deventer E, Preiser W, Doerr HW, Chow VT, de Kruif J, Peiris JS, Goudsmit J. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med. 2006 Jul;3(7):e237. doi: 10.1371/journal.pmed.0030237. PMID: 16796401; PMCID: PMC1483912.
- Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y, Ying T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 2020 Feb 17;9(1):382-385. doi: 10.1080/22221751.2020.1729069. PMID: 32065055; PMCID: PMC7048180.
- Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020 May 8;368(6491):630-633. doi: 10.1126/science.abb7269. Epub 2020 Apr 3. PMID: 32245784; PMCID: PMC7164391.