Difference between revisions of "Part:BBa K3431036"
Jerry252ray (Talk | contribs) |
|||
Line 3: | Line 3: | ||
<partinfo>BBa_K3431036 short</partinfo> | <partinfo>BBa_K3431036 short</partinfo> | ||
− | |||
− | |||
− | + | ===Introduction=== | |
+ | zz146_B toehold switch is a regulatory part for the downstream reporter gene. With this part, the protein expression can be controlled by the miR-146. The sequence of the toehold switch can be separated into the following 5 regions from its 5' end: TBS (trigger binding site), stem region, loop region with RBS (ribosome binding site), complimentary stem region with a start codon, and linker. Upon binding with miR-146, its hairpin structure can be opened up and the ribosomes can bind with its RBS (ribosome binding site), triggering the translation of the downstream reporter. | ||
+ | |||
+ | ===Design=== | ||
+ | |||
+ | The design of the toehold switch was mainly based on the previous research<sup>[1][2][3][4][5][6]</sup>. For the zz146_B toehold switch, we adopted the loop and the linker structure from Green et al., 2016<sup>[7]</sup>. Using NUPACK analysis and Vienna binding models, we designed the sequence of the toehold switch. (See our model page: https://2020.igem.org/Team:CSMU_Taiwan/Model ) | ||
− | |||
<html> | <html> | ||
<br> | <br> | ||
− | + | <figure style="mirgin-right: 1em; float:left; width:40%; border:1px solid black"> | |
− | + | <img src="https://static.igem.org/mediawiki/parts/5/58/T--CSMU_Taiwan--zz146_B_NU.png" style="display: block;margin-left: auto;margin-right: auto; width: 70%"> | |
− | <img src="https://static.igem.org/mediawiki/parts/5/58/T--CSMU_Taiwan--zz146_B_NU.png" style="width: | + | <figcaption style="text-align: center;"> |
+ | Figure 1. NUPACK analysis result | ||
+ | </figcaption> | ||
+ | </figure> | ||
</div> | </div> | ||
− | < | + | <figure style="mirgin-right: 1em; float:left; width:40%; border:1px solid black"> |
+ | <img src="https://static.igem.org/mediawiki/parts/a/a0/T--CSMU_Taiwan--zz146_B_Ve.png" style="display: block;margin-left: auto;margin-right: auto; width: 100%"> | ||
+ | <figcaption style="text-align: center;"> | ||
+ | Figure. 2. ViennaRNA Package result | ||
+ | </figcaption> | ||
+ | </figure> | ||
</html> | </html> | ||
− | + | <br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | |
− | < | + | ===Characterization using invertase=== |
− | < | + | |
− | < | + | The 2020 iGEM CSMU-Taiwan characterized the toehold switch with invertase (BBa_K3431000) reporter protein. The plasmid would be transcribed and translated with the protein synthesis kit at 37℃ for 2 hours. We would then add 5μl of 0.5M sucrose and measured the glucose concentration with RightestTM GS550 glucose meter after 30 minutes. In our experiments, the ON state refers to the conditions with miRNA triggers; while the OFF state means that there was no miRNA in the environment. We calculated the ON/OFF ratio of the toehold switch, which is defined as “the glucose concentration of the ON state/ the glucose concentration of the OFF state”. |
− | < | + | |
− | <br> | + | |
− | < | + | |
− | + | ||
− | |||
<html> | <html> | ||
<br> | <br> | ||
<div style="width=100%; display:flex; align-items: center; justify-content: center"> | <div style="width=100%; display:flex; align-items: center; justify-content: center"> | ||
− | <img src="https://static.igem.org/mediawiki/parts/9/99/T--CSMU_Taiwan--zz146_B_%28BBa_K3431045%29.png" style="width: | + | <img src="https://static.igem.org/mediawiki/parts/9/99/T--CSMU_Taiwan--zz146_B_%28BBa_K3431045%29.png" style="width:40%"> |
+ | |||
</div> | </div> | ||
+ | Figure. 3. The glucose productions of the zz146_B toehold switch-regulated invertase in different states. The blue bar refers to the OFF state (not added with miRNA). The green bar refers to the ON state (added with miR-146 trigger). The yellow bar refers to the state with non-related RNAs (added with miR-191). The pink bar refers to the state with non-related RNAs (added with miR-223). | ||
+ | |||
<br> | <br> | ||
</html> | </html> | ||
+ | |||
+ | <b>Results</b><br> | ||
+ | The glucose concentration in the ON state with miR-146 is about 20 mg/dL, indicating the sensitivity of the toehold switch is quite low. The ON/OFF ratio with miR-146 is 2.44, which suggested the regulatory function of the toehold switch. By contrast, the ON/OFF ratios with miR-191 and miR-223 are 1.56 and 1.89, respectively. These ratios are close to 1, meaning the zz146_B toehold switch has high specificity. As a result, zz146_B_ToeholdSwitch-Regulated Invertase has been proven to be useful for miR-146 detection. | ||
+ | |||
===References=== | ===References=== | ||
− | Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold switches: de-novo-designed regulators of gene expression. Cell, 159(4), | + | 1. Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold switches: de-novo-designed regulators of gene expression. Cell, 159(4), 925–939. https://doi.org/10.1016/j.cell.2014.10.002 |
− | + | ||
+ | 2. Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J., & Yin, P. (2017). Complex cellular logic computation using ribocomputing devices. Nature, 548(7665), 117–121. https://doi.org/10.1038/nature23271 | ||
+ | 3. Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N. M., Bosch, I., Dudley, D. M., O'Connor, D. H., Gehrke, L., & Collins, J. J. (2016). Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165(5), 1255–1266. https://doi.org/10.1016/j.cell.2016.04.059 | ||
+ | |||
+ | 4. Chappell, J., Westbrook, A., Verosloff, M., & Lucks, J. B. (2017). Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nature communications, 8(1), 1051. https://doi.org/10.1038/s41467-017-01082-6 | ||
+ | |||
+ | 5. Sadat Mousavi, P., Smith, S. J., Chen, J. B., Karlikow, M., Tinafar, A., Robinson, C., Liu, W., Ma, D., Green, A. A., Kelley, S. O., & Pardee, K. (2020). A multiplexed, electrochemical interface for gene-circuit-based sensors. Nature chemistry, 12(1), 48–55. https://doi.org/10.1038/s41557-019-0366-y | ||
+ | |||
+ | 6. Hong, F., Ma, D., Wu, K., Mina, L. A., Luiten, R. C., Liu, Y., Yan, H., & Green, A. A. (2020). Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators. Cell, 180(5), 1018–1032.e16. https://doi.org/10.1016/j.cell.2020.02.011 | ||
+ | |||
+ | 7. Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016; 165(5): 1255-66. | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
Line 44: | Line 66: | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
− | <partinfo> | + | <partinfo>BBa_K3431007 SequenceAndFeatures</partinfo> |
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display | ||
===Functional Parameters=== | ===Functional Parameters=== | ||
− | <partinfo> | + | <partinfo>BBa_K3431007 parameters</partinfo> |
<!-- --> | <!-- --> |
Revision as of 16:30, 25 October 2020
zz146_B Toehold Switch for miR-146 Detection
Introduction
zz146_B toehold switch is a regulatory part for the downstream reporter gene. With this part, the protein expression can be controlled by the miR-146. The sequence of the toehold switch can be separated into the following 5 regions from its 5' end: TBS (trigger binding site), stem region, loop region with RBS (ribosome binding site), complimentary stem region with a start codon, and linker. Upon binding with miR-146, its hairpin structure can be opened up and the ribosomes can bind with its RBS (ribosome binding site), triggering the translation of the downstream reporter.
Design
The design of the toehold switch was mainly based on the previous research[1][2][3][4][5][6]. For the zz146_B toehold switch, we adopted the loop and the linker structure from Green et al., 2016[7]. Using NUPACK analysis and Vienna binding models, we designed the sequence of the toehold switch. (See our model page: https://2020.igem.org/Team:CSMU_Taiwan/Model )
Characterization using invertase
The 2020 iGEM CSMU-Taiwan characterized the toehold switch with invertase (BBa_K3431000) reporter protein. The plasmid would be transcribed and translated with the protein synthesis kit at 37℃ for 2 hours. We would then add 5μl of 0.5M sucrose and measured the glucose concentration with RightestTM GS550 glucose meter after 30 minutes. In our experiments, the ON state refers to the conditions with miRNA triggers; while the OFF state means that there was no miRNA in the environment. We calculated the ON/OFF ratio of the toehold switch, which is defined as “the glucose concentration of the ON state/ the glucose concentration of the OFF state”.
Results
The glucose concentration in the ON state with miR-146 is about 20 mg/dL, indicating the sensitivity of the toehold switch is quite low. The ON/OFF ratio with miR-146 is 2.44, which suggested the regulatory function of the toehold switch. By contrast, the ON/OFF ratios with miR-191 and miR-223 are 1.56 and 1.89, respectively. These ratios are close to 1, meaning the zz146_B toehold switch has high specificity. As a result, zz146_B_ToeholdSwitch-Regulated Invertase has been proven to be useful for miR-146 detection.
References
1. Green, A. A., Silver, P. A., Collins, J. J., & Yin, P. (2014). Toehold switches: de-novo-designed regulators of gene expression. Cell, 159(4), 925–939. https://doi.org/10.1016/j.cell.2014.10.002
2. Green, A. A., Kim, J., Ma, D., Silver, P. A., Collins, J. J., & Yin, P. (2017). Complex cellular logic computation using ribocomputing devices. Nature, 548(7665), 117–121. https://doi.org/10.1038/nature23271
3. Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., Daringer, N. M., Bosch, I., Dudley, D. M., O'Connor, D. H., Gehrke, L., & Collins, J. J. (2016). Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165(5), 1255–1266. https://doi.org/10.1016/j.cell.2016.04.059
4. Chappell, J., Westbrook, A., Verosloff, M., & Lucks, J. B. (2017). Computational design of small transcription activating RNAs for versatile and dynamic gene regulation. Nature communications, 8(1), 1051. https://doi.org/10.1038/s41467-017-01082-6
5. Sadat Mousavi, P., Smith, S. J., Chen, J. B., Karlikow, M., Tinafar, A., Robinson, C., Liu, W., Ma, D., Green, A. A., Kelley, S. O., & Pardee, K. (2020). A multiplexed, electrochemical interface for gene-circuit-based sensors. Nature chemistry, 12(1), 48–55. https://doi.org/10.1038/s41557-019-0366-y
6. Hong, F., Ma, D., Wu, K., Mina, L. A., Luiten, R. C., Liu, Y., Yan, H., & Green, A. A. (2020). Precise and Programmable Detection of Mutations Using Ultraspecific Riboregulators. Cell, 180(5), 1018–1032.e16. https://doi.org/10.1016/j.cell.2020.02.011
7. Pardee K, Green AA, Takahashi MK, et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 2016; 165(5): 1255-66. Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]