Difference between revisions of "Part:BBa K3573002:Design"

 
(Design Notes)
 
Line 7: Line 7:
  
 
===Design Notes===
 
===Design Notes===
Oncogene target for scFV
+
Ras signaling pathways. Ras signaling is involved in numerous cellular functions, including cell proliferation, apoptosis, migration, fate specification, and differentiation. A key Ras effector pathway is the mitogen-activated protein kinase (MAPK), Raf-MEK- ERK pathway. EGF binds to the extracellular domain of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). The signal is transmitted through the transmembrane domain resulting in EGFR dimerization and activation. Activated EGFR recruits the son of sevenless (SOS), a guanine nucleotide exchange factor (GEF), to its phosphorylated C-terminal tail via the adaptor proteins, SH2- adaptor protein (SHC) and growth factor receptor-bound protein 2 (Grb2). GEF exchanges GDP by GTP, activating Ras. Active, GTP- loaded Ras dimerizes and binds Raf, thereby promoting Raf dimerization and activation. Active Raf dimer phosphorylates and activates mitogen-activated protein kinase kinase 1 and 2 (MEK1/2), which induces ERK1/2 activation. Transcription factor Elk-1 is among ERK1/2 many downstream phosphorylation targets. Elk-1 binds to its cofactor, a dimer of serum response factor (SRF), leading to transcription activation and cell proliferation. Active GTP-bound Ras regulates a number of signaling pathways; among these is phosphatidylinositol 3-kinase (PI3K). PI3K is a heterodimer with a regulatory (p85) and catalytic (p110) subunits (not shown here). RTKs recruit the p85 subunit of PI3K. Ras activates p110 independently of p85 [172]. PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3), a process which can be reversed by the action of phosphatase and tensin homologue (PTEN). PIP3 recruits Phosphoinositide-dependent kinase-1 (PDK1) that phosphorylates a serine/threonine kinase, Akt (also known as PKB, protein kinase B) in the plasma membrane. This further induces the activation of mammalian target of rapamycin (mTOR) complex, one of the major pathways leading to cell growth. This pathway plays important roles in Ras-mediated cell survival and proliferation. 
 
+
  
 +
<reference> Nussinov R, Jang H, Tsai CJ. The structural basis for cancer treatment decisions. Oncotarget. 2014 Sep 15;5(17):7285-302. Review.
  
 
===Source===
 
===Source===

Latest revision as of 04:16, 23 October 2020


Human RAS G12V mutant


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 175
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 427


Design Notes

Ras signaling pathways. Ras signaling is involved in numerous cellular functions, including cell proliferation, apoptosis, migration, fate specification, and differentiation. A key Ras effector pathway is the mitogen-activated protein kinase (MAPK), Raf-MEK- ERK pathway. EGF binds to the extracellular domain of the epidermal growth factor receptor (EGFR), a receptor tyrosine kinase (RTK). The signal is transmitted through the transmembrane domain resulting in EGFR dimerization and activation. Activated EGFR recruits the son of sevenless (SOS), a guanine nucleotide exchange factor (GEF), to its phosphorylated C-terminal tail via the adaptor proteins, SH2- adaptor protein (SHC) and growth factor receptor-bound protein 2 (Grb2). GEF exchanges GDP by GTP, activating Ras. Active, GTP- loaded Ras dimerizes and binds Raf, thereby promoting Raf dimerization and activation. Active Raf dimer phosphorylates and activates mitogen-activated protein kinase kinase 1 and 2 (MEK1/2), which induces ERK1/2 activation. Transcription factor Elk-1 is among ERK1/2 many downstream phosphorylation targets. Elk-1 binds to its cofactor, a dimer of serum response factor (SRF), leading to transcription activation and cell proliferation. Active GTP-bound Ras regulates a number of signaling pathways; among these is phosphatidylinositol 3-kinase (PI3K). PI3K is a heterodimer with a regulatory (p85) and catalytic (p110) subunits (not shown here). RTKs recruit the p85 subunit of PI3K. Ras activates p110 independently of p85 [172]. PI3K phosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3), a process which can be reversed by the action of phosphatase and tensin homologue (PTEN). PIP3 recruits Phosphoinositide-dependent kinase-1 (PDK1) that phosphorylates a serine/threonine kinase, Akt (also known as PKB, protein kinase B) in the plasma membrane. This further induces the activation of mammalian target of rapamycin (mTOR) complex, one of the major pathways leading to cell growth. This pathway plays important roles in Ras-mediated cell survival and proliferation. 

<reference> Nussinov R, Jang H, Tsai CJ. The structural basis for cancer treatment decisions. Oncotarget. 2014 Sep 15;5(17):7285-302. Review.

Source

Purchased from addgene

References