Difference between revisions of "Part:BBa K115003:Design"

(References)
(Design Notes)
Line 6: Line 6:
  
 
===Design Notes===
 
===Design Notes===
The secondary structure is important to the function of these regions, but part of the wt secondary structure is destroyed by the scar. We've tried to alter the sequence so the predicted structure (through mfold and those kind of servers) is sort of conserved, but temperature sensitivity still has to be tested. If it doesn't work, possible solution might be the addition of a larger conserved part of the wt, which implies a small part of wt protein sequence as well.
+
The secondary structure is important to the function of RNA thermometer, but part of the secondary structure is destroyed by the introduction of the scar. We've tried to alter the sequence so that the predicted secondary structure is conserved. More information on the design of this part can be found [http://2008.igem.org/Team:TUDelft/Temperature_design here].
  
 +
The figure shows the secondary structure of the wild type RNA thermometer, as predicted by RNAfold, on the left. On the right the predicted secondary structure of this part, after ligation to a protein coding part, is shown. Notice that the 3' prime including the scar and the start codon do not belong to this part. The light blue nucleotides show the mutations that were needed to regain the original secondary structure after introduction of the scar.
  
 +
 +
[[Image:BBa_K115003.png | 600px]]
  
 
===Source===
 
===Source===

Revision as of 12:43, 28 October 2008

RNA thermometer (PrfA)


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

The secondary structure is important to the function of RNA thermometer, but part of the secondary structure is destroyed by the introduction of the scar. We've tried to alter the sequence so that the predicted secondary structure is conserved. More information on the design of this part can be found [http://2008.igem.org/Team:TUDelft/Temperature_design here].

The figure shows the secondary structure of the wild type RNA thermometer, as predicted by RNAfold, on the left. On the right the predicted secondary structure of this part, after ligation to a protein coding part, is shown. Notice that the 3' prime including the scar and the start codon do not belong to this part. The light blue nucleotides show the mutations that were needed to regain the original secondary structure after introduction of the scar.


BBa K115003.png

Source

This sequence is taken from the Listeria Monocytogenes (EU372032.). It's the 5'UTR of a TF induced at 37 degrees.

References

An RNA thermosensor controls expression of virulance genes in Listeria monocytogenes. J. Johansson et al. 2002