Difference between revisions of "Part:BBa K3561009"

 
Line 6: Line 6:
 
This peptide is expected to be a palladium reducing peptide. This peptide is modified by our team from the palladium binding peptide A6C11 (Coppage et al., 2013). We have incorporated a tryptophan residue at position 2 into the peptide as it was reported that tryptophan is capable of reducing palladium (Chiu et al., 2010). We did not use a double tryptophan structure in this peptide. This can enable a comparison of palladium reducing efficiency between single tryptophan and double tryptophan structures. Thus, we can evaluate whether a double tryptophan will be more effective in palladium reducing. We also want to investigate what effects will there have if we inserted the tryptophan residue at different positions.
 
This peptide is expected to be a palladium reducing peptide. This peptide is modified by our team from the palladium binding peptide A6C11 (Coppage et al., 2013). We have incorporated a tryptophan residue at position 2 into the peptide as it was reported that tryptophan is capable of reducing palladium (Chiu et al., 2010). We did not use a double tryptophan structure in this peptide. This can enable a comparison of palladium reducing efficiency between single tryptophan and double tryptophan structures. Thus, we can evaluate whether a double tryptophan will be more effective in palladium reducing. We also want to investigate what effects will there have if we inserted the tryptophan residue at different positions.
  
This peptide has an isoelectric point of 8.3, a molecular weight of 1.35 kDa and hydrophobicity of 28.70. The alanine residue at positions 4 and 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The serine residue at position 2 and threonine at position 10 is also reported to be important in binding with palladium(Sarikaya et al., 2003). The amino acid sequence of the peptide is TWNACAPTLRCL.
+
This peptide has an isoelectric point of 8.3, a molecular weight of 1.35 kDa and hydrophobicity of 28.70. The alanine residue at positions 4 and 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The threonine at position 10 is also reported to be important in binding with palladium(Sarikaya et al., 2003). The amino acid sequence of the peptide is TWNACAPTLRCL.
  
 
<!-- Add more about the biology of this part here
 
<!-- Add more about the biology of this part here

Revision as of 13:23, 9 October 2020


W2C6C11


This peptide is expected to be a palladium reducing peptide. This peptide is modified by our team from the palladium binding peptide A6C11 (Coppage et al., 2013). We have incorporated a tryptophan residue at position 2 into the peptide as it was reported that tryptophan is capable of reducing palladium (Chiu et al., 2010). We did not use a double tryptophan structure in this peptide. This can enable a comparison of palladium reducing efficiency between single tryptophan and double tryptophan structures. Thus, we can evaluate whether a double tryptophan will be more effective in palladium reducing. We also want to investigate what effects will there have if we inserted the tryptophan residue at different positions.

This peptide has an isoelectric point of 8.3, a molecular weight of 1.35 kDa and hydrophobicity of 28.70. The alanine residue at positions 4 and 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The threonine at position 10 is also reported to be important in binding with palladium(Sarikaya et al., 2003). The amino acid sequence of the peptide is TWNACAPTLRCL.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]