Difference between revisions of "Part:BBa K3561002"

Line 3: Line 3:
 
<partinfo>BBa_K3561002 short</partinfo>
 
<partinfo>BBa_K3561002 short</partinfo>
  
A6C11 is a palladium binding peptide. It is used as a library peptide in our project to act as a template for our mutations. The results of molecular dynamics for our modified peptides are also compared with this peptide. This peptide has an isoelectric point of 9.0, a molecular weight of 1.25kDa and hydrophobicity of 24.06. The alanine residue at position 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The arginine residue at position 10 is reported to coordinate with palladium(Pacardo et al., 2009). The serine and threonine residues at positions 1 and 2 are also reported to be important in binding with palladium(Sarikaya et al., 2003).
+
A6C11 is a palladium binding peptide. It is used as a library peptide in our project to act as a template for our mutations. The results of molecular dynamics for our modified peptides are also compared with this peptide. This peptide has an isoelectric point of 9.0, a molecular weight of 1.25kDa and hydrophobicity of 24.06. The alanine residue at position 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The arginine residue at position 10 is reported to coordinate with palladium(Pacardo et al., 2009). The serine and threonine residues at positions 1 and 2 are also reported to be important in binding with palladium(Sarikaya et al., 2003). The amino acid sequence TSNAVAPTLRCL.
  
 
<h2>References</h2>
 
<h2>References</h2>

Revision as of 13:07, 9 October 2020


A6C11(Coppage et al., 2013)

A6C11 is a palladium binding peptide. It is used as a library peptide in our project to act as a template for our mutations. The results of molecular dynamics for our modified peptides are also compared with this peptide. This peptide has an isoelectric point of 9.0, a molecular weight of 1.25kDa and hydrophobicity of 24.06. The alanine residue at position 6 has a minimal binding with palladium while the cysteine residue at position 11 has a strong binding with palladium, it was suggested that this may have higher efficiency(Coppage et al., 2013). The arginine residue at position 10 is reported to coordinate with palladium(Pacardo et al., 2009). The serine and threonine residues at positions 1 and 2 are also reported to be important in binding with palladium(Sarikaya et al., 2003). The amino acid sequence TSNAVAPTLRCL.

References

Pacardo, et al. “Biomimetic Synthesis of Pd Nanocatalysts for the Stille Coupling Reaction.” ACS Nano, U.S. National Library of Medicine, 2009, pubmed.ncbi.nlm.nih.gov/19422199/.

Sarikaya et al. “Molecular Biomimetics: Nanotechnology through Biology.” Nature News, Nature Publishing Group, 2003, www.nature.com/articles/nmat964.

Coppage, et al. “Exploiting Localized Surface Binding Effects to Enhance the Catalytic Reactivity of Peptide-Capped Nanoparticles.” Journal of the American Chemical Society, U.S. National Library of Medicine, 2013, pubmed.ncbi.nlm.nih.gov/23865951/.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]