Difference between revisions of "Part:BBa K3002211"
MSchlosser (Talk | contribs) |
|||
Line 4: | Line 4: | ||
<html> | <html> | ||
− | + | <p> | |
− | + | The construct encodes the secretion signal GLE in front of the MUT-PETase gene and a cCA secretion signal upstream to the MHETase gene. As selection marker an aadA cassette is used. Constructs encoding the GLE secretion signal upstream to the MUT-PETase gene shows no detectable secretion of said protein. The construct containing GLE leads in comparison to the other secretion signals to a high yield of MHETase. Both enzymes are crucial for the degradation of PET into its terephthalic acid and ethylene glycol. | |
− | < | + | </p> |
− | === | + | <div class="figure"> |
+ | <img src="https://2019.igem.org/wiki/images/b/b8/T--TU_Kaiserslautern--resultsFigure1.svg"/> | ||
+ | <p class="caption"><span class="phat">Overview of different level 2 MoClo constructs. | ||
+ | </span>We designed 35 different level 2 constructs by using the modular cloning system (MoClo) and transformed these into <i>Chlamydomonas</i> <i>reinhardtii</i>. These constructs contain promoters (PPSAD, PAR, PTub2), terminators (PSADter, RPL23ter, Tub2ter), and the coding sequences for selection markers (aadA, Hygro), tags (HA, His, SP20-HA, SP20-His), secretion signals (cCA, ARS, GLE) and the enzymes MHETase, wild-type PETase (WT-PETase), mutated PETase (Mut-PETase) and the mutated PETase from the iGEM team TJUSLS China 2016 (Mutate M). | ||
+ | </p> | ||
+ | </div> | ||
+ | <div class="figure"> | ||
+ | <img src="https://2019.igem.org/wiki/images/0/0a/T--TU_Kaiserslautern--resultsFigure8.svg"/> | ||
+ | <p class="caption"><span class="phat">The SP20 module increases the efficiency of protein secretion. | ||
+ | </span><span class="accent">(a)</span> Level 2 MoClo constructs harboring the aadA selection marker, and the coding sequences for MUT-PETase and MHETase equipped with the secretion signals introduced in Figure 6. The constructs contain the coding sequence for a conventional 3xHA tag (C, K, L), or the 3xHA tag preceded by a SP20 tag to enhance glycosylation (M, N, O). See Figure 1 for the description of other parts. <span class="accent">(b)</span> UVM4 transformants containing the constructs C, K, L and M, N, O were grown in TAP medium for seven days. Cells were centrifuged and the supernatant lyophilized, resuspended in 2xSDS buffer and analyzed by SDS-PAGE and immunoblotting with an anti-HA antibody. Transformant A27 introduced in Figures 4, served as positive control. The black arrow points to MHETase, the white arrow to MUT-PETase and the grey arrow to RPL1 (chloroplast ribosomal 50S protein L1). The RPL1 antibody was used to detect contamination from intracellular proteins. | ||
+ | </p> | ||
+ | </div> | ||
+ | <h1> The Kaiser Collection </h1> | ||
+ | <p> | ||
+ | We are proud to present our very own MoClo part collection for C. reinhardtii - the <a href="https://2019.igem.org/Team:TU_Kaiserslautern/Part_Collection">Kaiser collection</a>. | ||
+ | </p> | ||
+ | <p> | ||
+ | These 20 Parts are specifically designed and codon optimized for Chlamydomonas. Among them are regulatory elements, antibiotic resistances, resistance cassettes, secretion signals and tags. These parts were tested and optimized thoroughly and we can guarantee that they work 100%. With these, expression and secretion in Chlamy will be a success. Because this is a MoClo collection, the parts are highly standardized for worldwide application. The combination with other part collections works fast and easy. While in MoClo, nomenclature is a bit different from the iGEM BioBricks, it is quickly explained: | ||
+ | </p> | ||
+ | <p> | ||
+ | Level 0 parts are equivalent to basic parts, e.g. Promoters, coding sequences, etc. | ||
+ | </p> | ||
+ | <p> | ||
+ | Level 1 parts are combinations of basic parts and usually form functional transcription units. | ||
+ | </p> | ||
+ | <p> | ||
+ | Level 2 parts are combinations of Level 1 parts, in case you want to transfer multiple transcription units at once. For example, you can pair your gene of interest with a selection marker. | ||
+ | </p> | ||
+ | <p> | ||
+ | The great thing about the Kaiser Collection and MoClo is that the ligation works in a one pot, one step reaction, as the Type IIs restriction enzymes cut out their own recognition sites. This way, multiple constructs can be combined linearly in a fixed order to create complex structures. This is ensured by the standardized overlaps that assign the parts one of 10 positions in the final constructs. | ||
+ | After trying MoClo once, you won’t go back to traditional ligation. It is incredibly easy and reliable. | ||
+ | For this reason, we believe that our Kaiser Collection will strike a significant chord, as the future lies in standardized, easy to use methods such as MoClo. | ||
+ | Visit our <a href="https://2019.igem.org/Team:TU_Kaiserslautern/Part_Collection">part collection site</a> to get an overview over all parts of the Kaiser Collection | ||
+ | </p> | ||
+ | |||
+ | |||
+ | </html> | ||
<!-- --> | <!-- --> |
Revision as of 10:53, 12 December 2019
L2 spectinomycin resistance + GLE_Mut-PETase + cCA_MHETase
The construct encodes the secretion signal GLE in front of the MUT-PETase gene and a cCA secretion signal upstream to the MHETase gene. As selection marker an aadA cassette is used. Constructs encoding the GLE secretion signal upstream to the MUT-PETase gene shows no detectable secretion of said protein. The construct containing GLE leads in comparison to the other secretion signals to a high yield of MHETase. Both enzymes are crucial for the degradation of PET into its terephthalic acid and ethylene glycol.
The Kaiser Collection
We are proud to present our very own MoClo part collection for C. reinhardtii - the Kaiser collection.
These 20 Parts are specifically designed and codon optimized for Chlamydomonas. Among them are regulatory elements, antibiotic resistances, resistance cassettes, secretion signals and tags. These parts were tested and optimized thoroughly and we can guarantee that they work 100%. With these, expression and secretion in Chlamy will be a success. Because this is a MoClo collection, the parts are highly standardized for worldwide application. The combination with other part collections works fast and easy. While in MoClo, nomenclature is a bit different from the iGEM BioBricks, it is quickly explained:
Level 0 parts are equivalent to basic parts, e.g. Promoters, coding sequences, etc.
Level 1 parts are combinations of basic parts and usually form functional transcription units.
Level 2 parts are combinations of Level 1 parts, in case you want to transfer multiple transcription units at once. For example, you can pair your gene of interest with a selection marker.
The great thing about the Kaiser Collection and MoClo is that the ligation works in a one pot, one step reaction, as the Type IIs restriction enzymes cut out their own recognition sites. This way, multiple constructs can be combined linearly in a fixed order to create complex structures. This is ensured by the standardized overlaps that assign the parts one of 10 positions in the final constructs. After trying MoClo once, you won’t go back to traditional ligation. It is incredibly easy and reliable. For this reason, we believe that our Kaiser Collection will strike a significant chord, as the future lies in standardized, easy to use methods such as MoClo. Visit our part collection site to get an overview over all parts of the Kaiser Collection
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 2401
Illegal EcoRI site found at 5315
Illegal PstI site found at 3503
Illegal PstI site found at 4476
Illegal PstI site found at 6657
Illegal PstI site found at 6981
Illegal PstI site found at 7324
Illegal PstI site found at 8134 - 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 2401
Illegal EcoRI site found at 5315
Illegal NheI site found at 2665
Illegal NheI site found at 5579
Illegal PstI site found at 3503
Illegal PstI site found at 4476
Illegal PstI site found at 6657
Illegal PstI site found at 6981
Illegal PstI site found at 7324
Illegal PstI site found at 8134
Illegal NotI site found at 6992 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 2401
Illegal EcoRI site found at 5315
Illegal BglII site found at 7902 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 2401
Illegal EcoRI site found at 5315
Illegal PstI site found at 3503
Illegal PstI site found at 4476
Illegal PstI site found at 6657
Illegal PstI site found at 6981
Illegal PstI site found at 7324
Illegal PstI site found at 8134 - 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 2401
Illegal EcoRI site found at 5315
Illegal PstI site found at 3503
Illegal PstI site found at 4476
Illegal PstI site found at 6657
Illegal PstI site found at 6981
Illegal PstI site found at 7324
Illegal PstI site found at 8134
Illegal NgoMIV site found at 1401
Illegal NgoMIV site found at 1584
Illegal NgoMIV site found at 1694
Illegal NgoMIV site found at 3238
Illegal NgoMIV site found at 3265
Illegal NgoMIV site found at 4916
Illegal NgoMIV site found at 6590 - 1000COMPATIBLE WITH RFC[1000]