Difference between revisions of "Part:BBa K3060004"
Line 18: | Line 18: | ||
Scanning electron microscopy (SEM) was used to obtain the morphology of theDNA hydrogel. As shown in Fig. 3, there are a large number of hydrogel particles with a diameter of about 2 μm in the buffer. | Scanning electron microscopy (SEM) was used to obtain the morphology of theDNA hydrogel. As shown in Fig. 3, there are a large number of hydrogel particles with a diameter of about 2 μm in the buffer. | ||
[[File:T--DUT China A--parts-Fig 2-SEM image.png|400px|thumb|Figure 3. ''' SEM images showing structures of DNA hydrogel particles.''' ]] | [[File:T--DUT China A--parts-Fig 2-SEM image.png|400px|thumb|Figure 3. ''' SEM images showing structures of DNA hydrogel particles.''' ]] | ||
+ | ===References=== | ||
+ | [1] Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis[J]. Nano letters, 2017, 17(9): 5193-5198.<br/> | ||
+ | [2] Lee J B, Peng S, Yang D, et al. A mechanical metamaterial made from a DNA hydrogel[J]. Nature Nanotechnology, 2012, 7(12): 816.<br/> | ||
+ | [3] Joosse S A, Gorges T M, Pantel K. Biology, detection, and clinical implications of circulating tumor cells[J]. EMBO molecular medicine, 2015, 7(1): 1-11.<br/> | ||
+ | [4] Dean F B, Nelson J R, Giesler T L, et al. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome research, 2001, 11(6): 1095-1099.<br/> | ||
<!-- --> | <!-- --> |
Revision as of 22:43, 21 October 2019
RCA&MCA Primer2 for DNA hydrogel
This part is a ssDNA, cooperating with BBa_K3060002-BBa_K3060007 to form the DNA hydrogel. This conjugate can carry out the rolling circle amplification (RCA, or R). After the RCA completed, adding this part and primer2 (BBa_K3060005) to start the multi-primed chain amplification (MCA, or M).
Usage
This part is a ssDNA, cooperating with BBa_K3060002-BBa_K3060007 to form the DNA hydrogel. This conjugate can carry out the rolling circle amplification (RCA, or R). After the RCA completed, adding this part and primer2 (BBa_K3060005) to start the multi-primed chain amplification (MCA, or M).
Characterization
The formation of DNA Hydrogel.
The circular template we preparation is used for the RCA and MCA processes to form the DNA hydrogel. The method can be found in 2019 DUT_China_A. (https://2019.igem.org/Team:DUT_China_A/Protocols) We use a variety of methods to characterize the formation of DNA hydrogel.
a.Agarose Gel Electrophoresis
Agarose gel electrophoresis was used to evaluate the formation of DNA hydrogel. DNA hydrogel is difficult to migrate through the agarose gel and remain the retention in home position.
b.SEM
Scanning electron microscopy (SEM) was used to obtain the morphology of theDNA hydrogel. As shown in Fig. 3, there are a large number of hydrogel particles with a diameter of about 2 μm in the buffer.
References
[1] Song P, Ye D, Zuo X, et al. DNA hydrogel with aptamer-toehold-based recognition, cloaking, and decloaking of circulating tumor cells for live cell analysis[J]. Nano letters, 2017, 17(9): 5193-5198.
[2] Lee J B, Peng S, Yang D, et al. A mechanical metamaterial made from a DNA hydrogel[J]. Nature Nanotechnology, 2012, 7(12): 816.
[3] Joosse S A, Gorges T M, Pantel K. Biology, detection, and clinical implications of circulating tumor cells[J]. EMBO molecular medicine, 2015, 7(1): 1-11.
[4] Dean F B, Nelson J R, Giesler T L, et al. Rapid amplification of plasmid and phage DNA using phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome research, 2001, 11(6): 1095-1099.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]