Difference between revisions of "Part:BBa K2992016"

(References)
m (References)
Line 20: Line 20:
  
 
Minton, N., Ehsaan, M., Humphreys, C., Little, G., Baker, J., Henstra, A., Liew, F., Kelly, M., Sheng, L., Schwarz, K. and Zhang, Y. (2016). A roadmap for gene system development in Clostridium. Anaerobe, 41, pp.104-112.
 
Minton, N., Ehsaan, M., Humphreys, C., Little, G., Baker, J., Henstra, A., Liew, F., Kelly, M., Sheng, L., Schwarz, K. and Zhang, Y. (2016). A roadmap for gene system development in Clostridium. Anaerobe, 41, pp.104-112.
 +
 +
Zhang, Y., Xu, S., Chai, C., Yang, S., Jiang, W., Minton, N. and Gu, Y. (2016). Development of an inducible transposon system for efficient random mutagenesis inClostridium acetobutylicum. FEMS Microbiology Letters, 363(8), p.fnw065.
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 15:02, 21 October 2019


Pfdx-t14c from C. sporogenes

Promoter region from the ferredoxin gene of C. sporogenes with the corrected t14c substitution compared with Part: BBa_K2715002.


Usage and Biology

Pfdx is a strong constitutive promoter which regulates the ferredoxin gene in C. sporogenes. Ferredoxin is an iron-sulfur protein involved in central redox reactions occurring during the general metabolism of Clostridia. Pfdx was used in Nottingham’s 2018 iGEM project to drive the expression of various reporters (insert hyperlink). In our 2019 project, we sought to us Pfdx to drive the expression of our volatile and FAST reporter genes for predicting the production of botulinum neurotoxin following food manufacture. During our experimentation, we noted an erroneous c14t substitution exists in the 2018 construct which presumably occurred through a SNP in the 5’-cloning primer. The promoter region and 5’-UTR was also predicted using BPROM in last year’s entry. This year we have used experimental data from our group to ascertain the transcription start site and to differentiate between the promoter and 5’-UTR regions accordingly (Cañadas et al., 2019).

Characterisation

Data incoming

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

References

Cañadas, I., Groothuis, D., Zygouropoulou, M., Rodrigues, R. and Minton, N. (2019). RiboCas: A Universal CRISPR-Based Editing Tool for Clostridium. ACS Synthetic Biology, 8(6), pp.1379-1390

Minton, N., Ehsaan, M., Humphreys, C., Little, G., Baker, J., Henstra, A., Liew, F., Kelly, M., Sheng, L., Schwarz, K. and Zhang, Y. (2016). A roadmap for gene system development in Clostridium. Anaerobe, 41, pp.104-112.

Zhang, Y., Xu, S., Chai, C., Yang, S., Jiang, W., Minton, N. and Gu, Y. (2016). Development of an inducible transposon system for efficient random mutagenesis inClostridium acetobutylicum. FEMS Microbiology Letters, 363(8), p.fnw065.