Difference between revisions of "Part:BBa K3140005"
Line 3: | Line 3: | ||
<partinfo>BBa_K3140005 short</partinfo> | <partinfo>BBa_K3140005 short</partinfo> | ||
− | VVD36 is a fluoroprotein | + | VVD36-C73A is a fluoroprotein derived from the Vivid ([[Part:BBa_K1616014|VVD]]) blue-light photoreceptor in ''Neurospora crassa''. |
===Usage and Biology=== | ===Usage and Biology=== | ||
− | >> | + | VVD is a blue-light sensing photoreceptor from the ascomycete (spore-shooting fungus) ''N. crassa''. It is a member of a family of proteins containing a light-oxygen-voltage-sensing (LOV) domain, which modulate circadian responses to environmental stimuli<ref name="VVD">Schwerdtfeger, C. & Linden, H. VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. ''EMBO J'' '''22''', 4846-55 (2003).</ref>. Mutation of the highly-conserved LOV domain cystine residue (Cys73) to alanine will convert VVD into a fluoroprotein. In addition, previous work <ref name="VVD36">Zoltowski, B.D. ''et al.'' Conformational switching in the fungal light sensor Vivid. ''Science'' '''316''', 1054-7 (2007).</ref> indicates that truncation of the first 36 amino acids of VVD increases its stability in heterologous systems. Our VVD part incorporates both of these changes." |
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> |
Revision as of 10:09, 20 October 2019
VVD36-C73A - Truncated VIVID fluoroprotein derived from Neurospora crassa
VVD36-C73A is a fluoroprotein derived from the Vivid (VVD) blue-light photoreceptor in Neurospora crassa.
Usage and Biology
VVD is a blue-light sensing photoreceptor from the ascomycete (spore-shooting fungus) N. crassa. It is a member of a family of proteins containing a light-oxygen-voltage-sensing (LOV) domain, which modulate circadian responses to environmental stimuli[1]. Mutation of the highly-conserved LOV domain cystine residue (Cys73) to alanine will convert VVD into a fluoroprotein. In addition, previous work [2] indicates that truncation of the first 36 amino acids of VVD increases its stability in heterologous systems. Our VVD part incorporates both of these changes."
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 434
- 1000COMPATIBLE WITH RFC[1000]