Difference between revisions of "Part:BBa K3187000"

m
Line 28: Line 28:
 
                 <tr>
 
                 <tr>
 
                 <td><b>Parts</b></td>
 
                 <td><b>Parts</b></td>
                 <td>Coat protein, LPETGG, T7 promoter, <i>lac</i>-operator, T7 terminator, Short Linker 5AA, Strep-tagII </td>
+
                 <td>Coat protein, LPETGG, T7 promoter, <i>lac</i>-operator, RBS, T7 terminator, Short Linker 5AA, Strep-tagII </td>
 
                 </tr>
 
                 </tr>
 
                 <tr>
 
                 <tr>
Line 37: Line 37:
 
                 <h3> Usage and Biology</h3>
 
                 <h3> Usage and Biology</h3>
 
                  
 
                  
                 <p>The coat protein with LPETGG (CP-LPETGG) <a href="https://parts.igem.org/Part:BBa_K3187000"target="_blank">(BBa_K3187000)</a>
+
                 <p>The coat protein with LPETGG (CP-LPETGG <a href="https://parts.igem.org/Part:BBa_K3187000"target="_blank">BBa_K3187000)</a>
 
                     consists of 452 amino acids which are encoded by 1359 DNA base pairs. The whole  
 
                     consists of 452 amino acids which are encoded by 1359 DNA base pairs. The whole  
 
                     protein has a mass of 49.0 kDa. Its relevant parts are the coat protein (CP) <a href="https://parts.igem.org/Part:BBa_K3187017"target="_blank">(BBa_K3187017)</a>
 
                     protein has a mass of 49.0 kDa. Its relevant parts are the coat protein (CP) <a href="https://parts.igem.org/Part:BBa_K3187017"target="_blank">(BBa_K3187017)</a>
Line 51: Line 51:
 
                     We used the Sortase A7M <a href="https://parts.igem.org/Part:BBa_K3187028"target="_blank">(BBa_K3187028)</a>  
 
                     We used the Sortase A7M <a href="https://parts.igem.org/Part:BBa_K3187028"target="_blank">(BBa_K3187028)</a>  
 
                     and Sortase A5M <a href="https://parts.igem.org/Part:BBa_K3187016"target="_blank">(BBa_K3187016)</a>.  
 
                     and Sortase A5M <a href="https://parts.igem.org/Part:BBa_K3187016"target="_blank">(BBa_K3187016)</a>.  
                     The polyG recognition sequence is composed of four glycines (GGGG) <a href="https://parts.igem.org/Part:BBa_K3187018"target="_blank">(BBa_K3187018)</a>
+
                     The used polyG recognition sequence is composed of four glycines (GGGG) <a href="https://parts.igem.org/Part:BBa_K3187018"target="_blank">(BBa_K3187018)</a>
                     <br>The CP is originally found in bacteriophage P22 and forms its capsid with the scaffold protein(SP)
+
                     <br>The CP is originally found in bacteriophage P22 and forms its capsid with the scaffold protein (SP)
 
                     <a href="https://parts.igem.org/Part:BBa_K3187021"target="_blank">(BBa_K3187021)</a>.  
 
                     <a href="https://parts.igem.org/Part:BBa_K3187021"target="_blank">(BBa_K3187021)</a>.  
                     Heterologously expressed, CPs and SPs assemble to a Virus-like particle (VLP).
+
                     Heterologously expressed, coat proteins and scaffold poroteins assemble to a Virus-like particles (VLP).
 
                          
 
                          
 
                   <sup id="cite_ref-2" class="reference">
 
                   <sup id="cite_ref-2" class="reference">
Line 62: Line 62:
 
                 </p>
 
                 </p>
 
                 <p>Of course there are more parts necessary in order to express the CP-LPETGG heterologously in  
 
                 <p>Of course there are more parts necessary in order to express the CP-LPETGG heterologously in  
                     <i>E. coli</i>. As backbone, the pET24 plasmid was used. The gene of the CP is transcribed  
+
                     <i>E. coli</i> BL21. As backbone, the pET24 plasmid was used. The gene of the CP is transcribed  
 
                     into mRNA and then translated into an amino acid sequence, which arranges into the 3D structure of the protein.
 
                     into mRNA and then translated into an amino acid sequence, which arranges into the 3D structure of the protein.
 
                     The T7 promoter <a href="https://parts.igem.org/Part:BBa_K3187029"target="_blank">(BBa_K3187029)</a>  
 
                     The T7 promoter <a href="https://parts.igem.org/Part:BBa_K3187029"target="_blank">(BBa_K3187029)</a>  
Line 76: Line 76:
 
                 <h3> Methods</h3>
 
                 <h3> Methods</h3>
 
                 <h4>Cloning</h4>
 
                 <h4>Cloning</h4>
                 <p>The CP-LPETGG was cloned into the pET24 backbone with <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/Notebook"target="_blank">restriction and ligation</a>.  
+
                 <p>The CP-LPETGG was cloned into the pET24 backbone with <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">restriction and ligation</a> .  
 
                     To do this, the CP-LPETGG as well as the T7 promoter and the  
 
                     To do this, the CP-LPETGG as well as the T7 promoter and the  
 
                     <i>lac</i>-operator sequence was ordered from Integrated DNA Technologies (IDT). To verify the cloning,  
 
                     <i>lac</i>-operator sequence was ordered from Integrated DNA Technologies (IDT). To verify the cloning,  
Line 83: Line 83:
 
                 <h4>Purification</h4>
 
                 <h4>Purification</h4>
 
                 <p>The CP-LPETGG was heterologously expressed in <i>E. coli</i> BL21 and purified with  
 
                 <p>The CP-LPETGG was heterologously expressed in <i>E. coli</i> BL21 and purified with  
                     <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/Notebook"target="_blank">GE Healthcare ÄKTA Pure machine</a>  
+
                     <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">GE Healthcare ÄKTA Pure machine</a>  
 
                     which is a machine for FPLC. The used affinity tag was Strep-tagII.
 
                     which is a machine for FPLC. The used affinity tag was Strep-tagII.
 
                 </p>
 
                 </p>
                 <h4>SDS-Page and Western blot</h4>
+
                 <h4>SDS-PAGE and western blot</h4>
                 <p>To verify that the CP-LPETGG was produced, a <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">SDS-Page</a> followed by a  
+
                 <p>To verify that the CP-LPETGG was produced, a <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">SDS-PAGE</a> followed by a  
                     <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">Western blot</a> was performed.
+
                     <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">western blot</a> was performed.
 
                 </p>
 
                 </p>
                  
+
                 <h4>Forming multimers</h4>
 +
                <p>To test whether coat proteins with a LPETGG tag form stable multimers, the concentration of CP-LPETGG was increased
 +
                    in the presence of the protein BSA. The concentrated protein solution was heated up to 95 °C and a SDS-PAGE was performed
 +
                    to verify the stability of multimers.
 +
                </p>
 +
                <h4>Sortase-mediated Ligation</h4>
 +
                <p>In order to characterize CP-LPETGG, different assays were performed. The possibility of modifying the CP was tested with
 +
                    mCherry and Sortase A7M. The Sortase A7M successfully linked the mCherry and CP-LPETGG.
 +
                    The linkage was verified with a  SDS-PAGE.
 +
                    To identify whether the sortase produce multimers of coat proteins with LPETGG tag, CP-LPETGG and sortase
 +
                    were incubated for 3 h at 37°C. It was verified via a SDS-PAGE. For more information, please have a look at our  <a href="https://2019.igem.org/Team:TU_Darmstadt/Project/Sortase"target="_blank">wiki</a>.
  
 
                 </p>
 
                 </p>
 
                 <h4>Assembly</h4>
 
                 <h4>Assembly</h4>
 
                 <p> The assembly is tested <i>in vivo</i> and <i>in vitro</i>. The assembled VLPs are collected with  
 
                 <p> The assembly is tested <i>in vivo</i> and <i>in vitro</i>. The assembled VLPs are collected with  
                    <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">ultracentrifugation</a> and  
+
                      <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">ultracentrifugation</a> and are visualized with Transmission electron microscopy
                    are visualized with
+
                     <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">(TEM)</a>.  
                     <a href="https://static.igem.org/mediawiki/2019/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">TEM</a>. For more information look at our <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP"target="_blank">wiki</a>
+
                    The diameter of VLPs was measured with dynamic light scattering (DLS) analysis.
 +
                    For more information look at our  
 +
                    <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP"target="_blank">wiki</a>.
 
                
 
                
  
Line 103: Line 115:
  
 
                 <h4>Cloning and Expression</h4>
 
                 <h4>Cloning and Expression</h4>
                 <p>The successful cloning was proven with sanger sequencing and production with a Western blot.
+
                 <p>The successful cloning was proven with sanger sequencing and production with a western blot.
                         <div style="text-align: center;">
+
                       
                            <a href="https://static.igem.org/mediawiki/2019/9/9c/T--TU_Darmstadt--Western_blot_CP-LPETGG_CP.jpeg"target="_blank">  
+
                         <div style="text-align: center;">  
                        <img class="img-fluid center" src="https://static.igem.org/mediawiki/2019/9/9c/T--TU_Darmstadt--Western_blot_CP-LPETGG_CP.jpeg" style="max-width:60%" />
+
                                <a href="https://2019.igem.org/wiki/images/9/9c/T--TU_Darmstadt--Western_blot_CP-LPETGG_CP.jpeg"target="_blank">
 +
                              <img class="img-fluid center" src="https://2019.igem.org/wiki/images/9/9c/T--TU_Darmstadt--Western_blot_CP-LPETGG_CP.jpeg" style="max-width:60%" />
 +
                              </a>
 +
                             
 +
                              <div class="caption">
 +
                                <p>
 +
                                <b>Figure 1:</b>
 +
                                      Western blot of all produced and purified proteins
 +
                                  </p>
 +
                              </div>
 +
                              </div>
 +
                <p>Fig. 1 shows that the band of the CP-LPETGG is approximatley found by the 49 kDa band. Consequently, the successful production
 +
                    was proven.CP-LPETGG was detected with Strep-Tactin-HRP.</p>       
 +
 
 +
                                         
 +
                     
 +
                </p>
 +
                <h4>Forming multimers</h4>
 +
                <p>The SDS-PAGE suggests that the CP-LPETGG does not form multimers, even if it is in high concentration.
 +
                <div style="text-align: center;"> 
 +
                        <a href="#"target="_blank">
 +
                        <img class="img-fluid center" src="#" style="max-width:60%" />
 
                         </a>
 
                         </a>
 
                         <div class="caption">
 
                         <div class="caption">
 
                           <p>
 
                           <p>
                           <b>Figure 1:</b>
+
                           <b>Figure 2:</b>
                                 Western blot of all produced and purified proteins.
+
                                 SDS-PAGE of BSA and CP-LPETGG
 
                             </p>
 
                             </p>
 
                         </div>
 
                         </div>
 
                         </div>
 
                         </div>
                <p>Fig. 1 shows that the band of the CP-LPETGG is approximatley found by the 49 kDa band. Consequently, the successful protein production
+
                    Fig. 2 shows the bands of BSA approximatley at .... and the CP-LPETGG at 49 kDa. When the proteins were combined, there are
                     was proven.CP-LPETGG is detected with Strep-Tactin-HRP.</p>      
+
                     two bands, one of CP-LPETGG and one of BSA. Hence, no multimers were formed.
 +
                    </p>
  
                                         
+
                <h4>Sortase-medited Reaction</h4>
                     
+
                <p>The possibility of modification was shown with a SDS-PAGE, which shows mCherries linked to CP-LPETGG.
                  
+
                        <div style="text-align: center;"> 
 +
                                <a href="#"target="_blank">
 +
                                <img class="img-fluid center" src="#" style="max-width:60%" />
 +
                                </a>
 +
                                <div class="caption">
 +
                                  <p>
 +
                                  <b>Figure 2:</b>
 +
                                  SDS-PAGE of CP-LPETGG modified with mCherry.
 +
                                    </p>
 +
                                </div>
 +
                                </div>
 +
 
 +
                    The SDS-PAGE shows multiple red fluorecent bands (Fig. 3) at approximatley ..., which relate to a higher molecular weight than mCherry itself has. Consequently, mCherry must have been inked
 +
                    to CP-LPETGG. Want to know more about how the modification works? Please look at our <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/Sortase"target="_blank">wiki</a>.
 +
                </p>
 +
                <p>
 +
                    The results on the SDS-PAGE of testing sortase-mediated linkage between coat proteins with LPETGG tag with sortase (Fig. 2)
 +
                    suggested that Sortase A7M and Sortase A5M produce CP-LPETGG multimers, because wild type sortase A is able to
 +
                    link two proteins together via disulfide bridges
 +
                    <sup id="cite_ref-3" class="reference">
 +
                            <a href="#cite_note-3">[3]
 +
                            </a>
 +
                        </sup>
 +
                        <sup id="cite_ref-4" class="reference">
 +
                                <a href="#cite_note-4">[4]
 +
                                </a>
 +
                            </sup>
 +
                    and  the P22 Coat Protein accommodates a cysteine residue.
 +
                    <div style="text-align: center;">
 +
                            <a href="https://static.igem.org/mediawiki/parts/c/c7/T--TU_Darmstadt--CP-LPETGG_Sortase.png"target="_blank">
 +
                        <img class="img-fluid center" src="https://static.igem.org/mediawiki/parts/c/c7/T--TU_Darmstadt--CP-LPETGG_Sortase.png" style="max-width:60%" />
 +
                        </a>
 +
                        <div class="caption">
 +
                          <p>
 +
                          <b>Figure 2:</b>
 +
                                SDS-PAGE of sortase-mediated linkage between several coat proteins with LPETGG tag.
 +
                            </p>
 +
                        </div>
 +
                        </div>
 +
                 </p>
  
 
                 <h4> Assembly</h4>
 
                 <h4> Assembly</h4>
Line 126: Line 199:
 
                         ultracentrifugation at 150.000 x g in a sucrose cushion (35% w/v). After completion of the ultracentrifugation  
 
                         ultracentrifugation at 150.000 x g in a sucrose cushion (35% w/v). After completion of the ultracentrifugation  
 
                         reatment, sediment was clearly visible in the centrifuge tube which we suspected to mainly contain VLPs.  
 
                         reatment, sediment was clearly visible in the centrifuge tube which we suspected to mainly contain VLPs.  
                         Transmission electron microscopy (TEM) was used to image capsids taken from the sediment. For increased  
+
                         TEM was used to image capsids taken from the sediment. For increased  
 
                         contrast, samples were negative-stained with uranyl acetate. We were able to show a high density of visually  
 
                         contrast, samples were negative-stained with uranyl acetate. We were able to show a high density of visually  
 
                         intact VLPs all over the sample measuring a diameter of 60 nm or less (Fig. 2). For more information about VLP assembly,
 
                         intact VLPs all over the sample measuring a diameter of 60 nm or less (Fig. 2). For more information about VLP assembly,
 
                         visit our <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP"target="_blank">wiki</a>.  
 
                         visit our <a href="http://2019.igem.org/Team:TU_Darmstadt/Project/P22_VLP"target="_blank">wiki</a>.  
 
                         <div style="text-align: center;">
 
                         <div style="text-align: center;">
                                <a href="https://static.igem.org/mediawiki/2019/5/52/T--TU_DARMSTADT--invitro_UZ_TEM.png"target="_blank">   
+
                        <a href="https://2019.igem.org/wiki/images/5/52/T--TU_DARMSTADT--invitro_UZ_TEM.png"target="_blank">   
                         <img class="img-fluid center" src="https://static.igem.org/mediawiki/2019/5/52/T--TU_DARMSTADT--invitro_UZ_TEM.png" style="max-width:60%" />
+
                         <img class="img-fluid center" src="https://2019.igem.org/wiki/images/5/52/T--TU_DARMSTADT--invitro_UZ_TEM.png" style="max-width:60%" />
                         
+
                         </a>  
                         </a>
+
 
                         <div class="caption">
 
                         <div class="caption">
 
                           <p>
 
                           <p>
Line 144: Line 216:
 
                 </p>
 
                 </p>
 
                 <p> The images of TEM show the assembled VLPs. VLPs only assemble with functional coat proteins. As a result,  
 
                 <p> The images of TEM show the assembled VLPs. VLPs only assemble with functional coat proteins. As a result,  
                     the CPs produced using this part are fully functional . The CPs assemble with  
+
                     the CPs produced using this part are fully functional. The CPs assemble with  
                     scaffold proteins (SPs) and they can be modified on the surface (Fig. 4). Moreover, CPs also assemble without SPs  
+
                     SPs and they can be modified on the surface (Fig. 4). Moreover, CPs also assemble without SPs  
 
                     (Fig. 3).
 
                     (Fig. 3).
 
                 </p>
 
                 </p>
 
                 <div style="text-align: center;">   
 
                 <div style="text-align: center;">   
                         <a href="https://static.igem.org/mediawiki/parts/b/bc/T--TU_Darmstadt--TEM_CP_ohne_SP.jpeg"target="_blank">  
+
                         <a href="https://static.igem.org/mediawiki/parts/b/bc/T--TU_Darmstadt--TEM_CP_ohne_SP.jpeg"target="_blank">  
 
                     <img class="img-fluid center" src="https://static.igem.org/mediawiki/parts/b/bc/T--TU_Darmstadt--TEM_CP_ohne_SP.jpeg" style="max-width:40%" />
 
                     <img class="img-fluid center" src="https://static.igem.org/mediawiki/parts/b/bc/T--TU_Darmstadt--TEM_CP_ohne_SP.jpeg" style="max-width:40%" />
 
                       </a>
 
                       </a>
Line 155: Line 227:
 
                           <p>
 
                           <p>
 
                           <b>Figure 3:</b>
 
                           <b>Figure 3:</b>
                                 Assembly of only coat proteins with LPETGG.   
+
                                 Assembly of only coat proteins with a LPETGG tag.   
 
                             </p>
 
                             </p>
 
                         </div>
 
                         </div>
Line 161: Line 233:
 
                     <p>Fig. 3 shows that no scaffold proteins are necessary for assembly.</p>     
 
                     <p>Fig. 3 shows that no scaffold proteins are necessary for assembly.</p>     
 
                      
 
                      
                     <div style="text-align: center;">
+
                     <div style="text-align: center;">
                             <a href="https://static.igem.org/mediawiki/parts/b/b7/T--TU_Darmstadt--TEM_CP_SP_sGFP.jpeg"target="_blank">  
+
                             <a href="https://static.igem.org/mediawiki/parts/b/b7/T--TU_Darmstadt--TEM_CP_SP_sGFP.jpeg"target="_blank">  
 
                     <img class="img-fluid center" src="https://static.igem.org/mediawiki/parts/b/b7/T--TU_Darmstadt--TEM_CP_SP_sGFP.jpeg" style="max-width:40%" />
 
                     <img class="img-fluid center" src="https://static.igem.org/mediawiki/parts/b/b7/T--TU_Darmstadt--TEM_CP_SP_sGFP.jpeg" style="max-width:40%" />
                </a>
+
                        </a>
 
                         <div class="caption">
 
                         <div class="caption">
 
                           <p>
 
                           <p>
 
                           <b>Figure 4:</b>
 
                           <b>Figure 4:</b>
                                 Assembly of modified CP-LPETGG and scaffold proteins. Several CP-LPETGG are linked to sfGFP.  
+
                                 Assembly of modified CP-LPETGG and scaffold proteins. Several CP-LPETGG are linked to sGFP.  
 
                             </p>
 
                             </p>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
 
                      
 
                      
                     <p>Fig. 4 shows that CP-LPETGG and SPs assemble to VLPs and CP-LPETGG can be modified for this process</p>  
+
                     <p>Fig. 4 shows that CP-LPETGG and SPs assemble to VLPs and CP-LPETGG can be modified for this process.</p>
 +
 
 +
                    <p>The diameter of VLPs consisting of different protein combinations was measured with dynamic light scattering
 +
                        (DLS) analysis.
 +
                        <div style="text-align: center;"> 
 +
                                <a href="https://2019.igem.org/wiki/images/6/68/T--TU_DARMSTADT--DLS_ohne_Mod.png"target="_blank">
 +
                        <img class="img-fluid center" src="https://2019.igem.org/wiki/images/6/68/T--TU_DARMSTADT--DLS_ohne_Mod.png" style="max-width:70%" />
 +
                            </a>
 +
                            <div class="caption">
 +
                              <p>
 +
                              <b>Figure 5:</b>
 +
                                  Diagram of DLS measurment of VLPs
 +
                                </p>
 +
                            </div>
 +
                        </div>
 +
 
 +
                            As shown in the diagram, VLPs which only consist of  coat proteins with LPETGG tag and VLPs made out of coat proteins
 +
                            without a tag are smaller than P22-VLPs containing CP and SP (Fig. 5). VLPs with both proteins have a diameter 
 +
                            about 112 nm. Consequently, the LPETGG tag does not disturb the assembly of coat proteins.
 +
                            </p>
 +
 
 
                     <h2>References</h2>
 
                     <h2>References</h2>
 
                     <ol class="references">
 
                     <ol class="references">
Line 184: Line 276:
 
                             Synthetic LPETG-Containing Peptide Incorporation in the <i>Staphylococcus aureus</i> Cell-Wall in a Sortase A- and Growth  
 
                             Synthetic LPETG-Containing Peptide Incorporation in the <i>Staphylococcus aureus</i> Cell-Wall in a Sortase A- and Growth  
 
                             Phase-Dependent Manner, plos one, 19.02.2014
 
                             Phase-Dependent Manner, plos one, 19.02.2014
                             <a rel="nofollow" class="external autonumber" href="http://doi.org/10.1371/journal.pone.0089260">[1] </a>
+
                             <a rel="nofollow" class="external autonumber" href="https://doi.org/10.1371/journal.pone.0089260">[1] </a>
 
                             </span>
 
                             </span>
 
                         </li>
 
                         </li>
Line 195: Line 287:
 
                                 Dustin Patterson, Benjamin LaFrance, Trevor Douglas, Rescuing recombinant proteins by sequestration  
 
                                 Dustin Patterson, Benjamin LaFrance, Trevor Douglas, Rescuing recombinant proteins by sequestration  
 
                                 into the P22 VLP, Chemical Communications, 2013, 49: 10412-10414
 
                                 into the P22 VLP, Chemical Communications, 2013, 49: 10412-10414
                             <a rel="nofollow" class="external autonumber" href="http://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc46517a#!divAbstractcite_note-1">[2] </a>
+
                             <a rel="nofollow" class="external autonumber" href="https://pubs.rsc.org/en/content/articlelanding/2013/cc/c3cc46517a#!divAbstractcite_note-1">[2] </a>
 
                             </span>
 
                             </span>
 
                         </li>
 
                         </li>
 +
                        <li id="cite_note-3">
 +
                                <span class="mw-cite-backlink">
 +
                                    <a href="#cite_ref-3">↑</a>
 +
                                </span>
 +
                                <span class="reference-text">
 +
                                            Jia X, Kwon S, Wang CI, Huang YH, Chan LY, Tan CC, Rosengren KJ, Mulvenna JP, Schroeder CI,
 +
                                            Craik DJ, Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A, the Journal
 +
                                            of biological chemistry, 2014, 289, 627-6638
 +
                                <a rel="nofollow" class="external autonumber" href="http://www.jbc.org/content/289/10/6627.long ">[3] </a>
 +
                                </span>
 +
                            </li>
 +
                            <li id="cite_note-4">
 +
                                    <span class="mw-cite-backlink">
 +
                                        <a href="#cite_ref-4">↑</a>
 +
                                    </span>
 +
                                    <span class="reference-text">
 +
                                            Melissa E. Reardon-Robinson, Jerzy Osipiuk, Chungyu Chang, Chenggang Wu, Neda Jooya,
 +
                                            Andrzej Joachimiak, Asis Das, Hung Ton-That‡2, A Disulfide Bond-forming Machine
 +
                                            Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium
 +
                                            Actinomyces oris, Journal of biological chemistry, 2015, 290, 21393-21405
 +
                                    <a rel="nofollow" class="external autonumber" href="http://www.jbc.org/content/290/35/21393.long">[4] </a>
 +
                                    </span>
 +
                                </li>
 
                     </ol>
 
                     </ol>
 
                      
 
                      

Revision as of 22:33, 18 October 2019


P22 Bacteriophage Coat Protein with LPETGG Tag for Sortase-mediated Ligation


Profile

Name Coat protein with LPETGG in pET24
Base pairs 1359
Molecular weight 49.0 kDa
Origin Synthetic
Parts Coat protein, LPETGG, T7 promoter, lac-operator, RBS, T7 terminator, Short Linker 5AA, Strep-tagII
Properties Assembly with scaffold proteins to VLPs which can be modified exterior.

Usage and Biology

The coat protein with LPETGG (CP-LPETGG BBa_K3187000) consists of 452 amino acids which are encoded by 1359 DNA base pairs. The whole protein has a mass of 49.0 kDa. Its relevant parts are the coat protein (CP) (BBa_K3187017) and the LPETGG sequence (BBa_K3187019).
LPETGG is a synthetic sequence that is recognized by the enzyme sortase A and allows the coupling of CP with other peptides and proteins. For this, the sortase cleaves between the amino acids threonine (T) and glycine (G), and threonine forms an amide bond with another polyG sequence. [1] We used the Sortase A7M (BBa_K3187028) and Sortase A5M (BBa_K3187016). The used polyG recognition sequence is composed of four glycines (GGGG) (BBa_K3187018)
The CP is originally found in bacteriophage P22 and forms its capsid with the scaffold protein (SP) (BBa_K3187021). Heterologously expressed, coat proteins and scaffold poroteins assemble to a Virus-like particles (VLP). [2]

Of course there are more parts necessary in order to express the CP-LPETGG heterologously in E. coli BL21. As backbone, the pET24 plasmid was used. The gene of the CP is transcribed into mRNA and then translated into an amino acid sequence, which arranges into the 3D structure of the protein. The T7 promoter (BBa_K3187029) is recognized by the T7 polymerase. In order to regulate the protein production, the lac-operator (BBa_K3187029) was used. Furthermore, a RBS (BBa_K3187029) is in the construct and a Short Linker (5AA) (BBa_K3187030) is found between CP and LPETGG. The T7 terminator (BBa_K3187032) and Strep-tagII (BBa_K3187025) are located downstream of the coat protein CDS.

Methods

Cloning

The CP-LPETGG was cloned into the pET24 backbone with restriction and ligation . To do this, the CP-LPETGG as well as the T7 promoter and the lac-operator sequence was ordered from Integrated DNA Technologies (IDT). To verify the cloning, the sequence was controlled by sanger sequencing by Microsynth Seqlab.

Purification

The CP-LPETGG was heterologously expressed in E. coli BL21 and purified with GE Healthcare ÄKTA Pure machine which is a machine for FPLC. The used affinity tag was Strep-tagII.

SDS-PAGE and western blot

To verify that the CP-LPETGG was produced, a SDS-PAGE followed by a western blot was performed.

Forming multimers

To test whether coat proteins with a LPETGG tag form stable multimers, the concentration of CP-LPETGG was increased in the presence of the protein BSA. The concentrated protein solution was heated up to 95 °C and a SDS-PAGE was performed to verify the stability of multimers.

Sortase-mediated Ligation

In order to characterize CP-LPETGG, different assays were performed. The possibility of modifying the CP was tested with mCherry and Sortase A7M. The Sortase A7M successfully linked the mCherry and CP-LPETGG. The linkage was verified with a SDS-PAGE. To identify whether the sortase produce multimers of coat proteins with LPETGG tag, CP-LPETGG and sortase were incubated for 3 h at 37°C. It was verified via a SDS-PAGE. For more information, please have a look at our wiki.

Assembly

The assembly is tested in vivo and in vitro. The assembled VLPs are collected with ultracentrifugation and are visualized with Transmission electron microscopy (TEM). The diameter of VLPs was measured with dynamic light scattering (DLS) analysis. For more information look at our wiki.

Results

Cloning and Expression

The successful cloning was proven with sanger sequencing and production with a western blot.

Figure 1: Western blot of all produced and purified proteins

Fig. 1 shows that the band of the CP-LPETGG is approximatley found by the 49 kDa band. Consequently, the successful production was proven.CP-LPETGG was detected with Strep-Tactin-HRP.

Forming multimers

The SDS-PAGE suggests that the CP-LPETGG does not form multimers, even if it is in high concentration.

Figure 2: SDS-PAGE of BSA and CP-LPETGG

Fig. 2 shows the bands of BSA approximatley at .... and the CP-LPETGG at 49 kDa. When the proteins were combined, there are two bands, one of CP-LPETGG and one of BSA. Hence, no multimers were formed.

Sortase-medited Reaction

The possibility of modification was shown with a SDS-PAGE, which shows mCherries linked to CP-LPETGG.

Figure 2: SDS-PAGE of CP-LPETGG modified with mCherry.

The SDS-PAGE shows multiple red fluorecent bands (Fig. 3) at approximatley ..., which relate to a higher molecular weight than mCherry itself has. Consequently, mCherry must have been inked to CP-LPETGG. Want to know more about how the modification works? Please look at our wiki.

The results on the SDS-PAGE of testing sortase-mediated linkage between coat proteins with LPETGG tag with sortase (Fig. 2) suggested that Sortase A7M and Sortase A5M produce CP-LPETGG multimers, because wild type sortase A is able to link two proteins together via disulfide bridges [3] [4] and the P22 Coat Protein accommodates a cysteine residue.

Figure 2: SDS-PAGE of sortase-mediated linkage between several coat proteins with LPETGG tag.

Assembly

The images of ultracentrifugation displays that monomeric proteins were separated from assembled capsids by ultracentrifugation at 150.000 x g in a sucrose cushion (35% w/v). After completion of the ultracentrifugation reatment, sediment was clearly visible in the centrifuge tube which we suspected to mainly contain VLPs. TEM was used to image capsids taken from the sediment. For increased contrast, samples were negative-stained with uranyl acetate. We were able to show a high density of visually intact VLPs all over the sample measuring a diameter of 60 nm or less (Fig. 2). For more information about VLP assembly, visit our wiki.

Figure 2: Ultracentrifugation of assembled VLPs

The images of TEM show the assembled VLPs. VLPs only assemble with functional coat proteins. As a result, the CPs produced using this part are fully functional. The CPs assemble with SPs and they can be modified on the surface (Fig. 4). Moreover, CPs also assemble without SPs (Fig. 3).

Figure 3: Assembly of only coat proteins with a LPETGG tag.

Fig. 3 shows that no scaffold proteins are necessary for assembly.

Figure 4: Assembly of modified CP-LPETGG and scaffold proteins. Several CP-LPETGG are linked to sGFP.

Fig. 4 shows that CP-LPETGG and SPs assemble to VLPs and CP-LPETGG can be modified for this process.

The diameter of VLPs consisting of different protein combinations was measured with dynamic light scattering (DLS) analysis.

Figure 5: Diagram of DLS measurment of VLPs

As shown in the diagram, VLPs which only consist of coat proteins with LPETGG tag and VLPs made out of coat proteins without a tag are smaller than P22-VLPs containing CP and SP (Fig. 5). VLPs with both proteins have a diameter about 112 nm. Consequently, the LPETGG tag does not disturb the assembly of coat proteins.

References

  1. Silvie Hansenová Maňásková , Kamran Nazmi, Alex van Belkum, Floris J. Bikker, Willem J. B. van Wamel, Enno C. I. Veerman, Synthetic LPETG-Containing Peptide Incorporation in the Staphylococcus aureus Cell-Wall in a Sortase A- and Growth Phase-Dependent Manner, plos one, 19.02.2014 [1]
  2. Dustin Patterson, Benjamin LaFrance, Trevor Douglas, Rescuing recombinant proteins by sequestration into the P22 VLP, Chemical Communications, 2013, 49: 10412-10414 [2]
  3. Jia X, Kwon S, Wang CI, Huang YH, Chan LY, Tan CC, Rosengren KJ, Mulvenna JP, Schroeder CI, Craik DJ, Semienzymatic Cyclization of Disulfide-rich Peptides Using Sortase A, the Journal of biological chemistry, 2014, 289, 627-6638 [3]
  4. Melissa E. Reardon-Robinson, Jerzy Osipiuk, Chungyu Chang, Chenggang Wu, Neda Jooya, Andrzej Joachimiak, Asis Das, Hung Ton-That‡2, A Disulfide Bond-forming Machine Is Linked to the Sortase-mediated Pilus Assembly Pathway in the Gram-positive Bacterium Actinomyces oris, Journal of biological chemistry, 2015, 290, 21393-21405 [4]


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 1491
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]