Difference between revisions of "Part:BBa K3187001"
Line 51: | Line 51: | ||
<a href="#cite_note-2">[2] </a> | <a href="#cite_note-2">[2] </a> | ||
</sup> | </sup> | ||
− | Bacteriophagic coat proteins have been used for many purposes, for example vaccines | + | Bacteriophagic coat proteins have been used for many purposes, for example vaccines |
<sup id="cite_ref-3" class="reference"> | <sup id="cite_ref-3" class="reference"> | ||
<a href="#cite_note-1">[3] </a> | <a href="#cite_note-1">[3] </a> | ||
+ | </sup> | ||
+ | or drug delivery. | ||
+ | <sup id="cite_ref-4" class="reference"> | ||
+ | <a href="#cite_note-1">[4] </a> | ||
</sup> | </sup> | ||
− | <br>The P22 coat protein <a href="https://parts.igem.org/Part:BBa_K3187001"target="_blank">(BBa_K3187001)</a> consists of 431 | + | <br>The P22 coat protein <a href="https://parts.igem.org/Part:BBa_K3187001"target="_blank">(BBa_K3187001)</a> consists of 431 amino acids |
− | and its molecular weight is 46.9 | + | and its molecular weight is 46.9 kDa. |
Because it is found in the structural components of viral proteins, it is an important part of Virus-like particles | Because it is found in the structural components of viral proteins, it is an important part of Virus-like particles | ||
(VLP) as well. Together with the scaffold protein <a href="https://parts.igem.org/Part:BBa_K3187021"target="_blank">(BBa_K3187021)</a>, | (VLP) as well. Together with the scaffold protein <a href="https://parts.igem.org/Part:BBa_K3187021"target="_blank">(BBa_K3187021)</a>, | ||
the proteins assemble to a VLP | the proteins assemble to a VLP | ||
− | <sup id="cite_ref- | + | <sup id="cite_ref-5" class="reference"> |
− | <a href="#cite_note- | + | <a href="#cite_note-5">[5] </a> |
</sup> | </sup> | ||
and build the basis for our | and build the basis for our | ||
Line 67: | Line 71: | ||
</p> | </p> | ||
<p>The coat proteins <a href="https://parts.igem.org/Part:BBa_K3187001"target="_blank">(BBa_K3187001)</a> are heterologously expressed in | <p>The coat proteins <a href="https://parts.igem.org/Part:BBa_K3187001"target="_blank">(BBa_K3187001)</a> are heterologously expressed in | ||
− | <i>E. | + | <i>E. coli</i> BL21 (DE3). As backbone the pACYCT2 plasmid is used, |
containing a | containing a | ||
<a href="https://parts.igem.org/Part:BBa_K3187029"target="_blank">T7 promoter, <i>lac</i>-operator and RBS (BBa_K3187029)</a>. | <a href="https://parts.igem.org/Part:BBa_K3187029"target="_blank">T7 promoter, <i>lac</i>-operator and RBS (BBa_K3187029)</a>. | ||
Line 82: | Line 86: | ||
</p> | </p> | ||
<h4>Purification</h4> | <h4>Purification</h4> | ||
− | <p> The heterologous expressed coat protein in <i>E. | + | <p> The heterologous expressed coat protein in <i>E. coli</i> was purified using a |
<a href="https://2019.igem.org/wiki/images/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">GE Healthcare ÄKTA Pure machine</a> | <a href="https://2019.igem.org/wiki/images/6/62/T--TU_Darmstadt--Methoden.pdf"target="_blank">GE Healthcare ÄKTA Pure machine</a> | ||
which is a machine for FPLC. | which is a machine for FPLC. | ||
Line 98: | Line 102: | ||
<h4>Cloning and Expression</h4> | <h4>Cloning and Expression</h4> | ||
<p>The ordered sequence from IDT was cloned into the pACYCT2 plasmid with Gibson assembly and heterologous expressed in | <p>The ordered sequence from IDT was cloned into the pACYCT2 plasmid with Gibson assembly and heterologous expressed in | ||
− | <i>E. | + | <i>E. coli</i>. The accuracy of cloning was controlled via sanger sequencing (Microsynth Seqlab ) and the production |
was observed using an SDS-PAGE and Western blot. | was observed using an SDS-PAGE and Western blot. | ||
</p> | </p> | ||
Line 112: | Line 116: | ||
</div> | </div> | ||
<p>Fig. 1 shows that the CPs were detected with Strep-Tactin-HRP. | <p>Fig. 1 shows that the CPs were detected with Strep-Tactin-HRP. | ||
− | The Western blot shows a band corresponding to the size of approximately 46 | + | The Western blot shows a band corresponding to the size of approximately 46.9 kDa. |
So, the successful production was proven. | So, the successful production was proven. | ||
</p> | </p> | ||
Line 141: | Line 145: | ||
href="https://link.springer.com/chapter/10.1007/0-387-28521-0_5">[2] </a> | href="https://link.springer.com/chapter/10.1007/0-387-28521-0_5">[2] </a> | ||
</span> | </span> | ||
+ | </li> | ||
− | <li id="cite_note-3"> | + | |
− | + | ||
+ | <li id="cite_note-3"> | ||
+ | <span class="mw-cite-backlink"> | ||
<a href="#cite_ref-3">↑</a> | <a href="#cite_ref-3">↑</a> | ||
− | + | </span> | |
− | + | <span class="reference-text"> | |
− | + | Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM, Virus-like particles in vaccine development., | |
− | + | Expert Rev Vaccines, 2010, 9: 1149-1176 | |
− | <a rel="nofollow" class="external autonumber" href="https:// | + | <a rel="nofollow" class="external autonumber" href="https://www.ncbi.nlm.nih.gov/pubmed/20923267" target="_blank">[3] </a> |
− | + | </span> | |
− | + | </li> | |
− | + | <li id="cite_note-4"> | |
<span class="mw-cite-backlink"> | <span class="mw-cite-backlink"> | ||
<a href="#cite_ref-4">↑</a> | <a href="#cite_ref-4">↑</a> | ||
+ | </span> | ||
+ | <span class="reference-text"> | ||
+ | Rohovie, Marcus J., Maya Nagasawa, and James R. Swartz. "Virus‐like particles: Next‐generation nanoparticles | ||
+ | for targeted therapeutic delivery." Bioengineering & translational medicine 2.1 (2017): 43-57 | ||
+ | <a rel="nofollow" class="external autonumber" href="https://aiche.onlinelibrary.wiley.com/doi/full/10.1002/btm2.10049">[4] </a> | ||
+ | </span> | ||
+ | </li> | ||
+ | |||
+ | <li id="cite_note-5"> | ||
+ | <span class="mw-cite-backlink"> | ||
+ | <a href="#cite_ref-5">↑</a> | ||
</span> | </span> | ||
<span class="reference-text"> | <span class="reference-text"> | ||
Line 160: | Line 178: | ||
diffraction | diffraction | ||
from heads, proheads and related structures J. Mol. Biol. 1976, 104, 387. | from heads, proheads and related structures J. Mol. Biol. 1976, 104, 387. | ||
− | <a rel="nofollow" class="external autonumber" href="https://www.sciencedirect.com/science/article/pii/0022283676902783?via%3Dihub">[ | + | <a rel="nofollow" class="external autonumber" href="https://www.sciencedirect.com/science/article/pii/0022283676902783?via%3Dihub">[5] </a> |
</span> | </span> | ||
</li> | </li> | ||
Line 167: | Line 185: | ||
</div> | </div> | ||
</div> | </div> | ||
− | </html> | + | </html> |
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== |
Revision as of 14:29, 17 October 2019
P22 Bacteriophage Coat Protein expression cassette
Profile
Name | Coat protein |
Base pairs | 1293 |
Molecular weight | 46.9 kDa |
Origin | Bacteriophage P22 |
Parts | Coat protein, T7 promoter, lac-operator, RBS, T7Te terminator, rrnb T1 terminator, Short Linker 5AA, Strep-tagII |
Properties | Assembly with scaffold protein to a Virus-like particle |
Usage and Biology
This part encodes the coat protein (CP) (BBa_K3187017)
of the bacteriophage P22 capsid. Importantly, it must not be confused with coat
proteins in membrane transport of eukaryotic cells. Coat protein is an umbrella term for many different proteins, which
simplify
the transfer of molecules between different compartments that are surrounded by a membrane.
[1]
In the natural context of P22, its genetic information is included
and protected by the capsid, before it is transferred into the host organism during infection.
[2]
Bacteriophagic coat proteins have been used for many purposes, for example vaccines
[3]
or drug delivery.
[4]
The P22 coat protein (BBa_K3187001) consists of 431 amino acids
and its molecular weight is 46.9 kDa.
Because it is found in the structural components of viral proteins, it is an important part of Virus-like particles
(VLP) as well. Together with the scaffold protein (BBa_K3187021),
the proteins assemble to a VLP
[5]
and build the basis for our
modular platform.
The coat proteins (BBa_K3187001) are heterologously expressed in E. coli BL21 (DE3). As backbone the pACYCT2 plasmid is used, containing a T7 promoter, lac-operator and RBS (BBa_K3187029). Moreover the part comprises a C-terminal Strep-tagII (BBa_K3187025), a Short Linker (5AA) (BBa_K3187030) and two terminators, T7Te terminator and rrnb T1 terminator (BBa_K3187036).
Methods
Cloning
The sequence of the coat protein ordered from Integrated DNA Technologies (IDT) was inserted in the pACYCT2 backbone. For this purpose, the Gibson asssembly was used. The sequence was verified by sanger sequencing through Microsynth Seqlab.
Purification
The heterologous expressed coat protein in E. coli was purified using a GE Healthcare ÄKTA Pure machine which is a machine for FPLC.
SDS-PAGE and Western blot
To verify that the coat protein was heterologous produced, a SDS-PAGE followed by a Western blot was performed.
Results
Cloning and Expression
The ordered sequence from IDT was cloned into the pACYCT2 plasmid with Gibson assembly and heterologous expressed in E. coli. The accuracy of cloning was controlled via sanger sequencing (Microsynth Seqlab ) and the production was observed using an SDS-PAGE and Western blot.
Fig. 1 shows that the CPs were detected with Strep-Tactin-HRP. The Western blot shows a band corresponding to the size of approximately 46.9 kDa. So, the successful production was proven.
References
- ↑ Juan S. Bonifacino, Jennifer Lippincott-Schwartz, Coat proteins: shaping membranetransport, NATURE REVIEWS MOLECULAR CELLBIOLOGY, May 2013, 4, 409-414 [1]
- ↑ Sherwood Casjens and Peter Weigele, DNA Packaging by Bacteriophage P22, Viral Genome Packaging Machines: Genetics, Structure, and Mechanism, 2005, 80- 88 [2]
- ↑ Roldão A, Mellado MC, Castilho LR, Carrondo MJ, Alves PM, Virus-like particles in vaccine development., Expert Rev Vaccines, 2010, 9: 1149-1176 [3]
- ↑ Rohovie, Marcus J., Maya Nagasawa, and James R. Swartz. "Virus‐like particles: Next‐generation nanoparticles for targeted therapeutic delivery." Bioengineering & translational medicine 2.1 (2017): 43-57 [4]
- ↑ W. Earnshaw, S. Casjens, S. C. Harrison, Assembly of the head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures J. Mol. Biol. 1976, 104, 387. [5]
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 1458
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1504