Difference between revisions of "Part:BBa K3111101"
m (→Day 3) |
m (→Protein Analysis) |
||
Line 55: | Line 55: | ||
In order to observe whether the M. xanthus encapsulin shell was successfully expressed we analysed our cell pellet using SDS PAGE. The pellet obtained from the 50 mL cultures was then resuspended in Tris Buffer Saline at an OD600 10. Once resuspended the sample was cell lysed using sonication. Following sonication the sample were span to separate the soluble and insoluble fragments form the whole cell lysate. 50 μL from each sample were obtained and stained with Laemmli reagent. | In order to observe whether the M. xanthus encapsulin shell was successfully expressed we analysed our cell pellet using SDS PAGE. The pellet obtained from the 50 mL cultures was then resuspended in Tris Buffer Saline at an OD600 10. Once resuspended the sample was cell lysed using sonication. Following sonication the sample were span to separate the soluble and insoluble fragments form the whole cell lysate. 50 μL from each sample were obtained and stained with Laemmli reagent. | ||
− | From Figure 3 it could be concluded that the encapsulin shell was successfully produced since the correct band at ⁓36 kDa is observed in both the soluble and insoluble fragment. It could also be concluded that encapsulins are mostly insoluble as we observe a much thicker band in the corresponding lane. (30-70% respectively). | + | From Figure 3 it could be concluded that the encapsulin shell was successfully produced since the correct band at ⁓36 kDa is observed in both the soluble and insoluble fragment. It could also be concluded that encapsulins are mostly insoluble as we observe a much thicker band in the corresponding lane. (~30-70% respectively). |
[[Image:Mxanthus3.png|180px|thumb|left|'''Figure 3:''' SDS PAGE of EncA expression; L: PageRuler Protein Ladder S: Soluble Fragment I:Insoluble fragment.]] | [[Image:Mxanthus3.png|180px|thumb|left|'''Figure 3:''' SDS PAGE of EncA expression; L: PageRuler Protein Ladder S: Soluble Fragment I:Insoluble fragment.]] | ||
Line 63: | Line 63: | ||
After executing the SDS PAGE we concluded 2 things. Firstly, we used most of the capacity of the column thus some of the EncA protein tagged with FLAG is not bound thus elutes during the loading step/ or some parts of the resin due to mishandling were inaccessible to the EncA thus elute. Secondly, we successfully eluted the EncA since similarly we obtain the bands at the appropriate position | After executing the SDS PAGE we concluded 2 things. Firstly, we used most of the capacity of the column thus some of the EncA protein tagged with FLAG is not bound thus elutes during the loading step/ or some parts of the resin due to mishandling were inaccessible to the EncA thus elute. Secondly, we successfully eluted the EncA since similarly we obtain the bands at the appropriate position | ||
− | |||
===Transmission Electron Microscopy=== | ===Transmission Electron Microscopy=== |
Latest revision as of 14:01, 16 October 2019
Myxococcus Xanthus encapsulin monomer fused to a FLAG-tag
Part BBa_K3111001 expressed with a strong T7 promoter and fused to a FLAG-tag on the C-terminus for purification.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 20
Usage
BBa_K3111101 has been used to exploit the modularity of our drug delivery platform in terms of the delivery nanoparticle. It encodes for Myxococcus xanthus encapsulin monomer (BBa_K3111001) which once expressed self-assembles into an 180-mer to form a hollow 30-32 nm encapsulin shell. We wanted to study its expression in E. coli and the possibility of purification to get an insight of its production feasibility. Moreover, using transmission electron microscopy and dynamic light scattering we studied its morphological properties while with the latter we also exploited its physicochemical stability to different pH and temperature conditions.
Experimental Results
DNA Analysis and Cloning
In order to confirm the ligation of the EncA gene encoding for the M. xanthus outer shell, we digested miniprepped plasmids from 4 different transformed DH5α colonies. As observed in figure 1, digestion with XbaI and XhoI indicated bands at the predicted sizes of 2166 and 892 bp (a band at 139 bp was expected; however its small size makes difficult to observe) for all 4 plasmid. This indicated that all 4 plasmids could be used to transform BL21* (DE3) to express the protein in bacterial cultures.
Day 1
Different batches of BL21*DE3 competent cells were transformed with empty pSB1C3 plasmids and pSB1C3 plasmids containing the EncA sequence coding for the M.xanthus capsid Transformed cells were grown in LB agar plates containing chloramphenicol and glucose. Plates were incubated at 37°C overnight.
Day 2
Transformed colonies for empty pSB1C3 and pSB1C3_EncA were used to prepare overnight starter cultures containing LB broth and chloramphenicol. Cultures were incubated at 37°C overnight.
Day 3
2 50 mL scale-up cultures were prepared from a single starter culture containing cells carrying pSB1C3 + BBa_K3111101. 1 50 mL culture was prepared from a single starter culture containing cells carrying empty pSB1C3. All cultures were incubated at 37°C until they reached an OD of 0.6. Once they reached OD 0.6, the cultures were induced by addition of 400 μΜ IPTG. The cultures were left to grow again overnight at 37 °C.
Day 4
The cultures were collected and transferred into 50 mL falcon tubes. Those were spun for 10 minutes at 5000 rpm in order to pellet the cells. Then the supernatant was discarded and the pellet frozen at -80 °C. The following growth curves were obtained: (might change labels accordingly)
While we would expect the control bacterial culture to grow at a faster rate compared to the induced culture after induction, this was not the curve as observed from the growth curves in Figure 2.
Protein Analysis
In order to observe whether the M. xanthus encapsulin shell was successfully expressed we analysed our cell pellet using SDS PAGE. The pellet obtained from the 50 mL cultures was then resuspended in Tris Buffer Saline at an OD600 10. Once resuspended the sample was cell lysed using sonication. Following sonication the sample were span to separate the soluble and insoluble fragments form the whole cell lysate. 50 μL from each sample were obtained and stained with Laemmli reagent.
From Figure 3 it could be concluded that the encapsulin shell was successfully produced since the correct band at ⁓36 kDa is observed in both the soluble and insoluble fragment. It could also be concluded that encapsulins are mostly insoluble as we observe a much thicker band in the corresponding lane. (~30-70% respectively).
We proceeded on with purification of the soluble fragment using column chromatography containing an anti-FLAG resin. The process involved packing the column, equilibrating the resin and loading the soluble sample. Then a washing step was performed to remove any potential non bound nonspecific proteins. Then we eluted using competitive elution by loading a 3X FLAG peptide which competed with the EncA-FLAg for binding sites with the resin, thus detaching the protein of interest from the column.
After executing the SDS PAGE we concluded 2 things. Firstly, we used most of the capacity of the column thus some of the EncA protein tagged with FLAG is not bound thus elutes during the loading step/ or some parts of the resin due to mishandling were inaccessible to the EncA thus elute. Secondly, we successfully eluted the EncA since similarly we obtain the bands at the appropriate position
Transmission Electron Microscopy
The purified samples were concentrated using Sigma Aldrich Centrifugal Filter with molecular weight cut of 10000 Da. The samples were spun for 15 min. Negative staining was performed in order to visualise the sample on Copper-carbon based grids.
The procedure was:
- Apply 5 uL of sample and let dry for around 2 minutes
- After the 2 minutes the drop is drained not blotted
- On parafilm, pipette a drop of 2% uranyl acetate and distilled water.
- First place the grid (on the sample face) on distilled water to remove excess sodium ions which could deposit
- Drain the water
- Place in uranyl acetate for 2 mins
- Drain the uranyl acetate: This allows Negative staining to outline structure of the encapsulin
- Drain water, but not the blot in order to allow staining and outline of the structure.
- Then the samples are placed in a rod and placed in the TEM to visualise.
The following images at a relative magnification of around 150k were obtained:
From Figure 5, we can observe a concentrated sample of round-shaped assembled encapsulins. The majority of them lie in the range of 30 nm, however as indicated on fig. 5b there are smaller variants. This is probably explained due to self-assembly dynamics which ends up producing encapsulins composed of different number of monomer encapsulin proteins.
Dynamic Light Scattering
We wanted to further investigate the morphology and conformational changes of M. xanthus encapsulin under different physicochemical changes. Therefore we proceeded with Dynamic light scattering, a technique which uses light scattering fluctuation to determine the diffusion properties of particles in solution and conclude a range of hydrodynamic diameter of the particles present in the solution.
We started by determining the lowest concentration at which we could reliably measure the hydrodynamic diameter of our assembled encapsulins associated with FLAG tags.
We initially concluded that the threshold for measurements is 1:100 (around 0.01 mg/mL) since lower dilutions give wobbly results (dilution 1:200) From these 3 measurements we concluded that: the average diameter was 39.7 nm. We were expecting an average diameter of 33 nm, however we speculate that the FLAG tags surrounding the encapsulin must have increased the overall diameter. Moreover, the smaller variants more probably are included within the peak since the size difference is considerably small to generate a separate peak; also even if much smaller particles were present, the intensity is proportional to the diameter raised to the power of 6, therefore any peak would hardly be observed. Finally, we observed in all of the dilution a bigger species that was decreasing in size at greater dilutions. A possible reason could be that an aggregate was present due to the age of the sample. Through serial dilutions, resuspension could have possibly broken up the bigger aggregates into smaller ones.
After conducting these series of experiments we reach the following conclusions. From Figure 7 we can observe that an increase in temperature leads to both decrease and increase in diameter. These results could possibly be due to loss of stability making them smaller and consequent break down could lead to aggregation thus resulting in bigger diameter. The presence of a bell curve with peak at 28 nm means that also a proportion of encapsulins of 39 nm still exists. This is an indication of the high stability these structures possess even at elevated temperature. Exposing the encapsulins at very acidic or basic conditions leads to an increase in diameter as observed in both Figure 8 and Figure 9. Similarly, we think that this is associated with aggregation of broken up monomers into larger particles.