Difference between revisions of "Part:BBa K3279008"

Line 6: Line 6:
  
 
===Usage and Biology===
 
===Usage and Biology===
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<partinfo>BBa_K3279008 SequenceAndFeatures</partinfo>
 
 
 
 
===Characterization from iGEM19_CAU_China===
 
 
This part is a improvement of the previous part cenA gene (BBa_K118023). With the fusion with INP-N, the endoglucanase coded by cenA gene can rivete on the surface and achieve E.coli surface display.
 
This part is a improvement of the previous part cenA gene (BBa_K118023). With the fusion with INP-N, the endoglucanase coded by cenA gene can rivete on the surface and achieve E.coli surface display.
 
We linked this part into a pET30a(+) backbone, then transformed this plasmid into BL21. We induced this recombinant E.coli strain overnight under the condition of 16℃ 0.08 mM. See Fig.1[1].
 
We linked this part into a pET30a(+) backbone, then transformed this plasmid into BL21. We induced this recombinant E.coli strain overnight under the condition of 16℃ 0.08 mM. See Fig.1[1].
Line 20: Line 12:
  
 
Then the effect of fusion on enzyme activity was detected by measuring the cellulose degradation ability using CMC-Na as substrate. See Fig.3[1].
 
Then the effect of fusion on enzyme activity was detected by measuring the cellulose degradation ability using CMC-Na as substrate. See Fig.3[1].
 +
<!-- -->
 +
<span class='h3bb'>Sequence and Features</span>
 +
<partinfo>BBa_K3279008 SequenceAndFeatures</partinfo>
 +
  
  

Revision as of 16:18, 15 October 2019


cenA gene fused with INP-N sequence

This part is a improvement of the previous part cenA gene (BBa_K118023). With the fusion with INP-N, the endoglucanase coded by cenA gene can rivet on the surface and achieve E.coli surface display[1].

Usage and Biology

This part is a improvement of the previous part cenA gene (BBa_K118023). With the fusion with INP-N, the endoglucanase coded by cenA gene can rivete on the surface and achieve E.coli surface display. We linked this part into a pET30a(+) backbone, then transformed this plasmid into BL21. We induced this recombinant E.coli strain overnight under the condition of 16℃ 0.08 mM. See Fig.1[1].

To confirm whether it worked or not, we first detected the presence of the target protein by immunofluorescence staining and compared the fluorescence pattern and compared it with a negative control where cellulases was not fused with INP. We attached the His-tag to the fusion protein, so that it could allow an anti-His-tag primary antibody to combine the fusion protein and then let a fluorescence secondary antibody recognize them. As the result, we could spot the fluorescence of GFP when INP-N was fused with cellulase. See Fig.2[1].

Then the effect of fusion on enzyme activity was detected by measuring the cellulose degradation ability using CMC-Na as substrate. See Fig.3[1]. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 333
    Illegal BamHI site found at 733
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 75
    Illegal NgoMIV site found at 408
    Illegal AgeI site found at 1051
    Illegal AgeI site found at 1414
  • 1000
    COMPATIBLE WITH RFC[1000]