Difference between revisions of "Part:BBa K2980000"

(layout)
Line 5: Line 5:
 
Cryptochrome 2 (CRY2) is a blue light stimulated photoreceptor, when exposed to blue light, it would interact with CIB1. Technically, we use 488nm laser of confocal microscope, which also activate GFP, to stimulate the binding of two light-control element. Functionally, it is used to fuse with other protein and bring them together into phase under light.
 
Cryptochrome 2 (CRY2) is a blue light stimulated photoreceptor, when exposed to blue light, it would interact with CIB1. Technically, we use 488nm laser of confocal microscope, which also activate GFP, to stimulate the binding of two light-control element. Functionally, it is used to fuse with other protein and bring them together into phase under light.
  
<!-- Add more about the biology of this part here
+
 
 
===Usage and Biology===
 
===Usage and Biology===
 
Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interact with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulate the corresponding metabolic and developmental programs[1], or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 16 minutes[2].
 
Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interact with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulate the corresponding metabolic and developmental programs[1], or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 16 minutes[2].
  
<!-- -->
 
  
  

Revision as of 13:38, 25 September 2019


Cry2

Cryptochrome 2 (CRY2) is a blue light stimulated photoreceptor, when exposed to blue light, it would interact with CIB1. Technically, we use 488nm laser of confocal microscope, which also activate GFP, to stimulate the binding of two light-control element. Functionally, it is used to fuse with other protein and bring them together into phase under light.


Usage and Biology

Photoreceptor that mediates primarily blue light inhibition of hypocotyl elongation and photoperiodic control of floral initiation, and regulates other light responses, including circadian rhythms, tropic growth, stomata opening, guard cell development, root development, bacterial and viral pathogen responses, abiotic stress responses, cell cycles, programmed cell death, apical dominance, fruit and ovule development, seed dormancy, and magnetoreception. Photoexcited cryptochromes interact with signaling partner proteins to alter gene expression at both transcriptional and post-translational levels and, consequently, regulate the corresponding metabolic and developmental programs[1], or via an alternative electron transport that involves small metabolites, including NADPH, NADH, and ATP. The half-life of the activated signaling state is about 16 minutes[2].


Reference

[1] Yu, X., Liu, H., Klejnot, J., & Lin, C. (2010). The Cryptochrome Blue Light Receptors. The Arabidopsis Book, 8(8). doi:10.1199/tab.0135

[2] Engelhard, C., Wang, X., Robles, D., Moldt, J., Essen, L., Batschauer, A., ... & Ahmad, M. (2014). Cellular Metabolites Enhance the Light Sensitivity of Arabidopsis Cryptochrome through Alternate Electron Transfer Pathways. The Plant Cell, 26(11), 4519-4531.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 393
    Illegal BglII site found at 852
    Illegal BamHI site found at 1331
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 277
    Illegal AgeI site found at 1006
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 629
    Illegal BsaI.rc site found at 38
    Illegal SapI.rc site found at 146