Difference between revisions of "Part:BBa K2933155"

(References)
Line 24: Line 24:
 
<p style="text-align: center;">
 
<p style="text-align: center;">
 
'''Figure 1.''' Left: The result of PCR, Right:The result of double enzyme digestion verification.LaneM,Marker, Lane1, the plasmid with VIM-66, Lane2, after double enzyme verification
 
'''Figure 1.''' Left: The result of PCR, Right:The result of double enzyme digestion verification.LaneM,Marker, Lane1, the plasmid with VIM-66, Lane2, after double enzyme verification
==References==
+
===References===
 
1. Yoshihiro Yamaguchi. Wanchun Jin. Kazuyo Matsunaga. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J. Med. Chem.200750266647-6653
 
1. Yoshihiro Yamaguchi. Wanchun Jin. Kazuyo Matsunaga. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J. Med. Chem.200750266647-6653
  

Revision as of 07:43, 24 September 2019


His+Linker f+VIM-66

This part encodes the fusion protein of His tag and VIM-66 to promote the expression and purification of target protein(VIM-66).

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 51
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 824
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage and Biology

This composite part is made up with three basic parts, the HiS tag, the thrombin restriction site and our target protein VIM-66. It encodes a protein which is VIM-66 fused with His tag. The fusion protein is about 28.3 kD. It is convenient for us to purify our target protein.

Molecular cloning

We insert VIM-66 gene into the standard vector then transfer it into E.coli.

VIM-66-PCR.jpeg

Figure 1. Left: The result of PCR, Right:The result of double enzyme digestion verification.LaneM,Marker, Lane1, the plasmid with VIM-66, Lane2, after double enzyme verification

References

1. Yoshihiro Yamaguchi. Wanchun Jin. Kazuyo Matsunaga. Crystallographic investigation of the inhibition mode of a VIM-2 metallo-beta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J. Med. Chem.200750266647-6653

2. Biochemical, Mechanistic, and Spectroscopic Characterizationof Metallo-β-lactamase VIM‑2[J]. Biochemistry, 2014, 53(46):7321-7331.

3. Christopeit T , Carlsen T J , Helland R , et al. Discovery of novel inhibitor scaffolds against the metallo-β-lactamase VIM-2 by SPR based fragment screening[J]. Journal of Medicinal Chemistry, 2015:151017114758002.

4. Christopeit T , Yang K W , Yang S K , et al. The structure of the metallo-β-lactamase VIM-2 in complex with a triazolylthioacetamide inhibitor[J]. 2016.