Difference between revisions of "Part:BBa K2686002"
(→Counts) |
|||
Line 44: | Line 44: | ||
====Counts==== | ====Counts==== | ||
+ | NegContCounts.png | ||
[[File:EncapsulinCounts.png|thumb|center|upright=3|DLS measurement of Encapsulin [[parts.igem.org/Part:BBa_K2686002|BBa_K2686002]] using a Zetasizer Nano ZS from Malvern Analytical determining the average particle size using the amount of counts. The refractive index chosen for the particles was the "protein" presetting and the refractive index of the medium was approximated to be that of water. This plot shows a peak at 18.166nm]] | [[File:EncapsulinCounts.png|thumb|center|upright=3|DLS measurement of Encapsulin [[parts.igem.org/Part:BBa_K2686002|BBa_K2686002]] using a Zetasizer Nano ZS from Malvern Analytical determining the average particle size using the amount of counts. The refractive index chosen for the particles was the "protein" presetting and the refractive index of the medium was approximated to be that of water. This plot shows a peak at 18.166nm]] | ||
− | |||
====Volume==== | ====Volume==== |
Revision as of 22:45, 17 October 2018
Encapsulin protein with HexaHistidine insert
This part encodes a modified Thermotoga maritima Encapsulin protein BBa_K2686001 and has an additional HexaHistidine (GGGGGGHHHHHHGGGGG) insert between amino acids 43 and 44, forming a loop on the interior surface of the encapsulin monomer providing higher heat resistance and stability, and better hydrodynamic properties (Moon et al., 2014).
Usage and Biology
The part can be used to deliver cargo, both on the outer surface of the nanoparticle by fusing a peptide in between the 139/140 Amino Acids as well as the protein's C terminus. Cargo proteins can also be loaded inside the nano-cage using a tag binding to Encapsulin's interior surface (Cassidy-Amstutz et al., 2016). The protein is modified with an additional amino acid sequence (GGGGGGHHHHHHGGGGG) between positions 43/44 granting it better stability and high heat resistance (Moon et al., 2014).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 77
Illegal BglII site found at 492 - 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 426
Illegal SapI.rc site found at 457
Characterization
A variety of different characterization techniques were used to assess the properties of the encapsulin protein cage.
Expression
A cell free expression system was used to synthesize the encapsulin proteins in vitro. The TX-TL cell free system is a robust way to express proteins (Sun et al., 2013), and we used the protocol developed by the 2017 EPFL iGEM team Aptasense.
Assembly
The self assembly of the encapsulin 60-mer was first examined using SDS PAGE, where a high band is expected to form due to the high molecular weight and size of the 1.9MDa complex.
DLS Measurements
Intensity
Counts
NegContCounts.png
Volume
Conclusion
Since the intensity weighted distribution shows how well particles with different sizes are identified from a fit to the autocorrelation function of the scattering, any protein aggregates even when present in small numbers can greatly vary the result.
References
Moon, H., Lee, J., Min, J. and Kang, S. (2014). Developing Genetically Engineered Encapsulin Protein Cage Nanoparticles as a Targeted Delivery Nanoplatform. Biomacromolecules, 15(10), pp.3794-3801.
Putri, R., Allende-Ballestero, C., Luque, D., Klem, R., Rousou, K., Liu, A., Traulsen, C., Rurup, W., Koay, M., Castón, J. and Cornelissen, J. (2017). Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake. ACS Nano, 11(12), pp.12796-12804.
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T. (2001). Cell-free translation reconstituted with purified components. Nature Biotechnology, 19(8), pp.751-755.
Sun, Z., Hayes, C., Shin, J., Caschera, F., Murray, R. and Noireaux, V. (2013). Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology. Journal of Visualized Experiments, (79).