Difference between revisions of "Part:BBa K2549028"
m |
|||
Line 22: | Line 22: | ||
[[File:ZF2.jpg|none|240px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | [[File:ZF2.jpg|none|240px|thumb|Khalil AS et al stated:''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<!-- Uncomment this to enable Functional Parameter display | <!-- Uncomment this to enable Functional Parameter display |
Latest revision as of 19:32, 17 October 2018
8*ZF43.8-minCMV
This part is one of the response elements of our amplifier, also executing the combiner function. 8*ZF43.8 binding (Part:BBa_K2446013) sites is assembled using two 4*ZF43.8 binding sites (Part:BBa_K2446006) with a biobrick scar between them. Minimal CMV (Part:BBa_K2549049) is a promotor providing very low basal expression and high maximal expression after induction. This part can switch on the expression of gene downstream after induced by our zinc finger-based transcription activator.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology
Our characterization
Flow cytometry results suggest that the transcriptional activators can specifically activate the promoters with responsive elements, orthogonally. Please visit http://2018.igem.org/Team:Fudan/Demonstration for a brief introduction of our project.
Synthetic promotor operators regulated by artificial zinc finger-based transcription factors
Khalil AS et al have reported several synthetic promotor operators which can interact with artificial zinc finger-based transcription factors with high specificity and high orthogonality[2].