Difference between revisions of "Part:BBa K2533046"

Line 3: Line 3:
 
<partinfo>BBa_K2533045 short</partinfo>
 
<partinfo>BBa_K2533045 short</partinfo>
  
produce latic acid
+
transport lactate
  
 
<h1>'''Usage and biology'''</h1>
 
<h1>'''Usage and biology'''</h1>

Revision as of 14:45, 17 October 2018

transport of lactic acid

RBS-mleS

transport lactate

Usage and biology

dld refers to FAD-dependent D-lactate dehydrogenase which could catalyze D-lactate’s transformation into pyruvate. With the overexpression of dld, Shewanella could utilize D-lactate more efficiently, which brings more electricity being produced.

Characterization

This is one section for lactate utilization part.

Figure1:RBS-lldP

DNA Gel Electrophoretic

To make sure that we get the target gene, we did the DNA gel electrophoretic to separate different gene. And here is the result.

Figure2:Verification of successful transformation of pSB1C3-RBS-lldP

Our target genes are 1713bp, and as the marker is DS5000, we could be sure that the bright bands in this picture are our target genes.

Electrogenesis

By comparing the ability of producing electricity, we might find out whether dld could effectively help Shewanella to produce more electricity.

Figure3:shows that our modification is effective. Every gene circuits can help strains produce lactate, and mleS-lldP-ldhA is the most efficient one. Therefore, our construction of gene circuits achieve the goal to help strains produce lactate.

It could be demonstrated that targeted genes could be expressed in the engineered cells. More NADH has been produced by engineered bacteria, which helps to produce more electricty.