Difference between revisions of "Part:BBa K2644001"
Line 7: | Line 7: | ||
<!-- Add more about the biology of this part here | <!-- Add more about the biology of this part here | ||
===Usage and Biology=== | ===Usage and Biology=== | ||
− | + | ||
<!-- --> | <!-- --> | ||
<span class='h3bb'>Sequence and Features</span> | <span class='h3bb'>Sequence and Features</span> | ||
Line 17: | Line 17: | ||
<partinfo>BBa_K2644001 parameters</partinfo> | <partinfo>BBa_K2644001 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | |||
+ | ===Usage=== | ||
+ | smURFP (small ultra-red FP) and HO-I is an important part in our group. It can experss smURFP along with the precursor of biliverdin--HO-I. As we know, smURFP has many advantages compared with other cyan, green, yellow and orange FPs, for it molecule less light is scattered, absorbed, or re-emitted by endogenous biomolecules. It has 642/670 nm excitation - emission peaks, a large extinction coefficient and quantum yield, and photostability comparable to that of eGFP. However, it must be combined with biliverdin (BV) to fluoresce. So in order to make it more convenient to observe fluorescence in the bacteria, we set up this composite part. | ||
+ | |||
+ | ===Biology=== | ||
+ | It's obvious that smURFP can't fluoresce without BV. So we construct the co-expression system, where the gene of fluorescent protein---smURFP and the gene of HO-1 should be connected to the same expression vector and then transferred to our target bacteria. The HO-I will be transferred to biliverdin through a series of conversion, and then fluorescent protein will combine with biliverdin directly in our target bacteria and glow in the bacteria. Then we can see activated light of 660nm (ultra-red light)through the laser confocal microscopy. | ||
+ | |||
+ | ===Reference=== | ||
+ | [1] John V Frangioni. In vivo near-infrared fluorescence imaging. [J].Current Opinion in Chemical Biology 2003, 7:626–634 | ||
+ | [2] Rodriguez EA,Tran GN , Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein .[J].NATURE METHODS,2016:763-769. | ||
+ | |||
+ | ==Results== | ||
+ | We did some examinations on part smURFP+HOI. |
Revision as of 14:46, 15 October 2018
smURFP+HOI
A gene for fluorescent protein smURFP and enzyme HOI
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Usage
smURFP (small ultra-red FP) and HO-I is an important part in our group. It can experss smURFP along with the precursor of biliverdin--HO-I. As we know, smURFP has many advantages compared with other cyan, green, yellow and orange FPs, for it molecule less light is scattered, absorbed, or re-emitted by endogenous biomolecules. It has 642/670 nm excitation - emission peaks, a large extinction coefficient and quantum yield, and photostability comparable to that of eGFP. However, it must be combined with biliverdin (BV) to fluoresce. So in order to make it more convenient to observe fluorescence in the bacteria, we set up this composite part.
Biology
It's obvious that smURFP can't fluoresce without BV. So we construct the co-expression system, where the gene of fluorescent protein---smURFP and the gene of HO-1 should be connected to the same expression vector and then transferred to our target bacteria. The HO-I will be transferred to biliverdin through a series of conversion, and then fluorescent protein will combine with biliverdin directly in our target bacteria and glow in the bacteria. Then we can see activated light of 660nm (ultra-red light)through the laser confocal microscopy.
Reference
[1] John V Frangioni. In vivo near-infrared fluorescence imaging. [J].Current Opinion in Chemical Biology 2003, 7:626–634 [2] Rodriguez EA,Tran GN , Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein .[J].NATURE METHODS,2016:763-769.
Results
We did some examinations on part smURFP+HOI.