Difference between revisions of "Part:BBa K2856001"
Line 9: | Line 9: | ||
Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 1). The Lactococcus Lactis NZ9000 has inability to synthesis GSH. In our project, we construct a plasmid harboring gshF in order to produce GSH in Lactococcus Lactis NZ9000. | Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 1). The Lactococcus Lactis NZ9000 has inability to synthesis GSH. In our project, we construct a plasmid harboring gshF in order to produce GSH in Lactococcus Lactis NZ9000. | ||
− | [[File:T--H14Z1 Hangzhou--Reaction_gshF.jpeg| <p>'''Figure. 1 Enzymatic reaction catalyzed by gshF'''</p>]] | + | [[File:T--H14Z1 Hangzhou--Reaction_gshF.jpeg|800px|thumb|centre| <p>'''Figure. 1 Enzymatic reaction catalyzed by gshF'''</p>]] |
=== Construction and validation of plasmid pNZ-gshF === | === Construction and validation of plasmid pNZ-gshF === |
Revision as of 14:07, 14 October 2018
Bifunctional glutamate-cysteine ligase/glutathione synthase (gshF)
The BBa_K2856001 harbors a coding sequence of bi-functional glutamate--cysteine ligase/glutathione synthase (gshF) derived from S.agalactiae. Codon-optimization has been made for Lactococcus Lactis. gshFp catalyzes the conversion of Cys, Glu and Gly to GSH.
Usage and Biology
Bifunctional glutamate--cysteine ligase/glutathione synthase (gshF) is an enzyme involved and responded to synthetic reaction of GSH. In this reaction, one Cysteine and one Glutamate are converted to one γ-GC, then one γ-GC and one Glycine are converted to one GSH (Figure 1). The Lactococcus Lactis NZ9000 has inability to synthesis GSH. In our project, we construct a plasmid harboring gshF in order to produce GSH in Lactococcus Lactis NZ9000.
Construction and validation of plasmid pNZ-gshF
Gene gshF was amplified from genomic DNA of S. agalactiae and cut with restriction enzyme Hind III and NcoI, and ligased with plasmid pNZ8148 cut with the same enzyme. Then the ligation product was transferred to E.coli and spread on plates containing 10 mg/L chloramphenicol. Colonies on the plates were randomly picked and inoculated in 1ml LB medium for 3 hours at 37℃, 200 rpm. 1 μl culture were added to the PCR system as template. As shown in Figure. 2, all the picked colonies had gene gshF, illustrating that the plasmid pNZ-gshF was successfully constructed.
Protein Analysis
After transferring the plasmid pNZ-gshF to L. lactis NZ9000, SDS-PAGE was performed to detect the protein expression level of gshF gene. The cells were washed twice with 0.1 M PBS after centrifugation. Crude protein was extracted through cell breaking using ultrasonication and centrifugation. Then the supernatant of the samples were used to analysis the protein expression. As shown in Figure. 3, expected bands of the GshF protein were observed on the gel in the lane of recombinant L. lactis containing pNZ-gshF induced with different nisin concentration while no GshF protein existed in L. lactis NZ9000.