Difference between revisions of "User:Scmohr/Enzyme background"

(Enzyme Coding Regions - Background Information)
(Enzyme Coding Regions - Background Information)
Line 1: Line 1:
 
==Enzyme Coding Regions - Background Information==
 
==Enzyme Coding Regions - Background Information==
  
All of the enzyme coding regions in the Registry consist of '''''single polypeptide chains''''' that can fold into catalytically active molecules.  Many enzymes are more complicated than this, consisting of two or more subunits that associate with one another to form the active protein.  Engineering such enzymes into a chassis will require careful design since the subunits will be required in some fixed "stoichiometric" ratio -- such as 1:1, 2:1, etc.  That means that to avoid wasteful (and perhaps debilitating) accumulation of an excess of one of the subunits, the expression of the separate coding sequences will need to be coordinated.
+
===Chain number===
 +
All of the enzyme coding regions in the Registry consist of '''''single polypeptide chains''''' that can fold into catalytically active molecules.  Many enzymes in living organisms are more complicated than this, consisting of two or more subunits that associate with one another to form the active protein.  Engineering such enzymes into a chassis will require careful design since the subunits will be required in some fixed "stoichiometric" ratio -- such as 1:1, 2:1, 3:2, etc.  That means that to avoid wasteful (and perhaps harmful) accumulation of an excess of one of the subunits, the expression of the separate coding sequences will need to be coordinated.
  
Most enzymes are proteins -- polymers of amino acid residues -- but a very important small set of enzymes are actually RNA molecules.  These RNA enzymes are called '''''ribozymes.''''' Although the Registry at present contains no ribozymes, that's likely to change since ribozymes have the important feature that they can be formed directly from DNA merely by transcription.  and do not require translation into protein before they can exert their catalytic effects.  That feature will surely soon be exploited by synthetic biologists. (Note that when ribozymes are included in the Registry, they will be classified under "RNA" parts.]
 
  
The major classification scheme used for enzymes comes from the International Union of Biochemistry and Molecular Biology (http://www.chem.qmul.ac.uk/iubmb/enzyme/)
+
===Chemical composition===
 +
Most enzymes are proteins -- polymers of amino acid residues -- but a very important small set of enzymes actually consists of RNA molecules.  These RNA enzymes are called '''''ribozymes.''''' Although the Registry at present contains no ribozymes, that's likely to change since ribozymes have the important feature that they can be formed directly from DNA merely by transcription,  and do not require translation into protein before they can exert their catalytic effects.  That feature will surely soon be exploited by synthetic biologists. (Note that when ribozymes ''are'' included in the Registry, they will be classified under "RNA" parts.]
 +
 
 +
 
 +
===Classification by reaction type===
 +
The major classification scheme used for enzymes comes from the International Union of Biochemistry and Molecular Biology (http://www.chem.qmul.ac.uk/iubmb/enzyme/).  This '''''"Enzyme Commission" (or "EC")system''''' is based upon '''''the precise chemical reaction(s) catalyzed by the enzyme.'''''  These fall into '''''six main classes:''''' (1) oxidoreductases, (2) transferases, (3) hydrolases, (4) lyases, (5) isomerases, and (6) ligases.  Each class is further subdivided into '''''subclasses''''' which in turn are broken down into '''''sub-subclasses!'''''  Finally, each specific enzyme has an indexing number within its sub-subclass.  As an example of how this system works, consider a popular synthetic biology enzyme, ''luxI (acyl-homoserine-lactone synthase).''  It is a ''transferase'' in the third subclass ''acyltransferases'' and falls into the first sub-subclass ''"transferring groups other than amino-acyl groups."''  Within this sub-subclass it was the 184th enzyme to be categorized.  Thus it gets an indexing ("EC") number 2.3.1.184.
 +
 
 +
===Use of EC numbers===
 +
Biochemists and molecular biologists seldom refer to enzymes with the full EC names and numbers except when publishing definitive papers where it's important that there be no confusion about exactly which enzyme they are talking about.  Nevertheless, the EC numbers have grown in importance as the number of known enzymes has increased.  Since the names of enzymes can often be confusing to non-specialists, the EC numbers play an important role in minimizing confusion.  They also

Revision as of 22:20, 4 June 2008

Enzyme Coding Regions - Background Information

Chain number

All of the enzyme coding regions in the Registry consist of single polypeptide chains that can fold into catalytically active molecules. Many enzymes in living organisms are more complicated than this, consisting of two or more subunits that associate with one another to form the active protein. Engineering such enzymes into a chassis will require careful design since the subunits will be required in some fixed "stoichiometric" ratio -- such as 1:1, 2:1, 3:2, etc. That means that to avoid wasteful (and perhaps harmful) accumulation of an excess of one of the subunits, the expression of the separate coding sequences will need to be coordinated.


Chemical composition

Most enzymes are proteins -- polymers of amino acid residues -- but a very important small set of enzymes actually consists of RNA molecules. These RNA enzymes are called ribozymes. Although the Registry at present contains no ribozymes, that's likely to change since ribozymes have the important feature that they can be formed directly from DNA merely by transcription, and do not require translation into protein before they can exert their catalytic effects. That feature will surely soon be exploited by synthetic biologists. (Note that when ribozymes are included in the Registry, they will be classified under "RNA" parts.]


Classification by reaction type

The major classification scheme used for enzymes comes from the International Union of Biochemistry and Molecular Biology (http://www.chem.qmul.ac.uk/iubmb/enzyme/). This "Enzyme Commission" (or "EC")system is based upon the precise chemical reaction(s) catalyzed by the enzyme. These fall into six main classes: (1) oxidoreductases, (2) transferases, (3) hydrolases, (4) lyases, (5) isomerases, and (6) ligases. Each class is further subdivided into subclasses which in turn are broken down into sub-subclasses! Finally, each specific enzyme has an indexing number within its sub-subclass. As an example of how this system works, consider a popular synthetic biology enzyme, luxI (acyl-homoserine-lactone synthase). It is a transferase in the third subclass acyltransferases and falls into the first sub-subclass "transferring groups other than amino-acyl groups." Within this sub-subclass it was the 184th enzyme to be categorized. Thus it gets an indexing ("EC") number 2.3.1.184.

Use of EC numbers

Biochemists and molecular biologists seldom refer to enzymes with the full EC names and numbers except when publishing definitive papers where it's important that there be no confusion about exactly which enzyme they are talking about. Nevertheless, the EC numbers have grown in importance as the number of known enzymes has increased. Since the names of enzymes can often be confusing to non-specialists, the EC numbers play an important role in minimizing confusion. They also