Difference between revisions of "Part:BBa K2598039"

Line 17: Line 17:
 
<partinfo>BBa_K2598039 parameters</partinfo>
 
<partinfo>BBa_K2598039 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
 +
===Characterization===
 +
<b>Figure 1</b> shows the relationship between the wavelength of light exposed on liquid medium and the intensity of BFP, GFP and RFP E. coli expressed from left figure to right figure respectively. We got the data through flow cytometer and analyzed it to get the figure. The y-axis is the number of cells, and the x-axis is fluorescence intensity. And every color is E. coli that grows for 8 hours under the light of the corresponding wavelength. We can see E. coli has the highest blue fluorescence expression under blue light from the left graph. And We can also see E. coli has the highest green and red fluorescence expression under green light and right light from the middle and right graph respectively. So this figure proves that our system and our parts can work well.
 +
<div>[[File:T—UCAS-China—LIGHT AND LIGHT.png |1000px|thumb|center|<b>Figure 1:</b>Relationship between the wavelength of light exposed on liquid medium and the intensity of BFP, GFP and RFP E. coli expressed from left figure to right figure respectively]]</div>
 +
 +
===Characterization===
 +
<b>Figure 2</b> shows the relationship between fluorescence intensity and excitation wavelength. The x-axis is wavelength of 10h illumination. The solid medium gradually emerged and the y-axis is RGB figure of fluorescence in illuminated solid medium. This curve illustrates how our system responses to different excitation wavelength, which perfectly meets our expectation. So this figure proves that our system and our parts can work well.
 +
<div>[[File:T—UCAS-China—abc222.png|1000px|thumb|center|<b>Figure 2:</b>Relationship between fluorescence intensity and excitation wavelength]]</div>

Revision as of 04:07, 8 October 2018


YF1+fixJ+PhIF

This parts contains yellow-light ensor TF1 and fixJ along with repressor PhIFunder their regulation.Together they can serve as a sensor triggered by yellow light.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 587
    Illegal NgoMIV site found at 659
    Illegal NgoMIV site found at 749
    Illegal NgoMIV site found at 767
    Illegal NgoMIV site found at 1259
    Illegal NgoMIV site found at 1552
    Illegal NgoMIV site found at 1646
    Illegal AgeI site found at 301
    Illegal AgeI site found at 1427
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1316
    Illegal BsaI.rc site found at 200


Characterization

Figure 1 shows the relationship between the wavelength of light exposed on liquid medium and the intensity of BFP, GFP and RFP E. coli expressed from left figure to right figure respectively. We got the data through flow cytometer and analyzed it to get the figure. The y-axis is the number of cells, and the x-axis is fluorescence intensity. And every color is E. coli that grows for 8 hours under the light of the corresponding wavelength. We can see E. coli has the highest blue fluorescence expression under blue light from the left graph. And We can also see E. coli has the highest green and red fluorescence expression under green light and right light from the middle and right graph respectively. So this figure proves that our system and our parts can work well.

Figure 1:Relationship between the wavelength of light exposed on liquid medium and the intensity of BFP, GFP and RFP E. coli expressed from left figure to right figure respectively

Characterization

Figure 2 shows the relationship between fluorescence intensity and excitation wavelength. The x-axis is wavelength of 10h illumination. The solid medium gradually emerged and the y-axis is RGB figure of fluorescence in illuminated solid medium. This curve illustrates how our system responses to different excitation wavelength, which perfectly meets our expectation. So this figure proves that our system and our parts can work well.

Figure 2:Relationship between fluorescence intensity and excitation wavelength