Difference between revisions of "Part:BBa K2609003"

 
Line 3: Line 3:
 
<partinfo>BBa_K2609003 short</partinfo>
 
<partinfo>BBa_K2609003 short</partinfo>
  
Coding sequence of the long tail fiber protein from T4 bacteriophage modified in-silico for better binding to phosphoethanolamine, the mediator of colistin resistance.
+
Coding sequence of the long tail fiber protein from T4 bacteriophage. The sequence has been modified in-silico for better binding to phosphoethanolamine near the receptor binding end of the protein. This is the second such modification in our series of four modifications.
 +
 
  
Note that the protein requires the co-expression of two other proteins (gp38 and gp57) for proper folding.
 
  
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
 +
<html>
 +
<h2> Biology </h2>
 +
<p>The T4 bacteriophage uses its long tail fiber to recognize and bind to its receptor OmpC on the surface of <i>E. coli</i> cells, its cognate host. The binding is mediated by non-covalent interactions that leads to the docking of the tip of the tail fiber (protein gp37) with OmpC in an extremely stable fashion.</p>
 +
 +
<p>This part is the coding sequence of a modified version of gp37 with the following amino acid changes</p>
 +
[Preetham inserts table here]
 +
 +
<p>The free movement of the rest of the phage body against the fixed tail leads to a confirmation change in the baseplate. This confirmation change pulls the entire phage to the cell surface followed by subsequent ejection of the phage DNA into the host<sup>[1]</sup>. The final injection happens with the aid of a "tail tube" that embeds itself into the outer membrane of the host and the mechanism is well conserved across multiple hosts because of similar membrane structures. The first interaction with the cell surface, i.e. the long tail fiber binding, is what determines the specificity of the phage to the host cell<sup>[2]</sup>. Modification of the tip of the tail fiber hence allows for a switching of the receptor that is used by the phage to infect the cell.</p>
 +
 +
<center><img src="https://static.igem.org/mediawiki/parts/8/87/T--IISc-Bangalore--phage_infection_mech.jpg" width=80% style="border: 1px solid black;"></center>
 +
 +
 +
<h2>Usage</h2>
 +
<h3> IISc-Bangalore iGEM 2018</h3>
 +
 +
<p>We used an in silico <a href="http://2018.igem.org/Team:IISc-Bangalore/PhageModifier">PhageModifier</a> pipeline to modify the native gp37 to have increased affinity for phosphoethanolamine. This part is the coding sequence of the second such modification with a predicted binding affinity of ____ kcal/mol for phosphoethanolamine (compared to the ___kcal/mol of the wildtype protein).</p>
 +
 +
 +
<h2>Characterization</h2>
 +
<h3>Extraction and purification with <a href="https://parts.igem.org/Part:BBa_K2609012">BBa_K2609013</a></h3>
  
 +
</html>
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>

Revision as of 05:29, 2 October 2018


T4 bacteriophage long tail fiber protein gp37 (Modification II)

Coding sequence of the long tail fiber protein from T4 bacteriophage. The sequence has been modified in-silico for better binding to phosphoethanolamine near the receptor binding end of the protein. This is the second such modification in our series of four modifications.


Usage and Biology

Biology

The T4 bacteriophage uses its long tail fiber to recognize and bind to its receptor OmpC on the surface of E. coli cells, its cognate host. The binding is mediated by non-covalent interactions that leads to the docking of the tip of the tail fiber (protein gp37) with OmpC in an extremely stable fashion.

This part is the coding sequence of a modified version of gp37 with the following amino acid changes

[Preetham inserts table here]

The free movement of the rest of the phage body against the fixed tail leads to a confirmation change in the baseplate. This confirmation change pulls the entire phage to the cell surface followed by subsequent ejection of the phage DNA into the host[1]. The final injection happens with the aid of a "tail tube" that embeds itself into the outer membrane of the host and the mechanism is well conserved across multiple hosts because of similar membrane structures. The first interaction with the cell surface, i.e. the long tail fiber binding, is what determines the specificity of the phage to the host cell[2]. Modification of the tip of the tail fiber hence allows for a switching of the receptor that is used by the phage to infect the cell.

Usage

IISc-Bangalore iGEM 2018

We used an in silico PhageModifier pipeline to modify the native gp37 to have increased affinity for phosphoethanolamine. This part is the coding sequence of the second such modification with a predicted binding affinity of ____ kcal/mol for phosphoethanolamine (compared to the ___kcal/mol of the wildtype protein).

Characterization

Extraction and purification with BBa_K2609013

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 424
  • 1000
    COMPATIBLE WITH RFC[1000]