Difference between revisions of "Part:BBa K2615004"

Line 3: Line 3:
  
  
== Background of Csy4 ==
+
<p>'''Csy4 (Csy6f), a member of CRISPR family.'''</p>
 
<p>
 
<p>
  Csy4 (Csy6f), a member of CRISPR family.
 
 
   Csy4 is a 21.4 kDa protein that binds and cleaves at the 3' side of a stable RNA hairpin structure via sequence- and structure-specific contacts. Csy4 binds its substrate RNA with extremely high affinity and functions as a single-turnover enzyme. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. A highly basic a-helix docks into the major groove of the hairpin and  contains multiple arginine residues that form a network of hydrogen.  
 
   Csy4 is a 21.4 kDa protein that binds and cleaves at the 3' side of a stable RNA hairpin structure via sequence- and structure-specific contacts. Csy4 binds its substrate RNA with extremely high affinity and functions as a single-turnover enzyme. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. A highly basic a-helix docks into the major groove of the hairpin and  contains multiple arginine residues that form a network of hydrogen.  
 
</p>
 
</p>

Revision as of 07:58, 11 September 2018

Csy4-Q104A, the No.2 member of Csy4 family.


Csy4 (Csy6f), a member of CRISPR family.

Csy4 is a 21.4 kDa protein that binds and cleaves at the 3' side of a stable RNA hairpin structure via sequence- and structure-specific contacts. Csy4 binds its substrate RNA with extremely high affinity and functions as a single-turnover enzyme. Tight binding is mediated exclusively by interactions upstream of the scissile phosphate that allow Csy4 to remain bound to its product. Substrate specificity is achieved by RNA major groove contacts that are highly sensitive to helical geometry, as well as a strict preference for guanosine adjacent to the scissile phosphate in the active site. A highly basic a-helix docks into the major groove of the hairpin and contains multiple arginine residues that form a network of hydrogen.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 1
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 377
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI site found at 93