Difference between revisions of "Part:BBa K2289002"
Sebafariasm (Talk | contribs) |
Sebafariasm (Talk | contribs) (→Kinetics) |
||
Line 69: | Line 69: | ||
[[File:UchileBiotec2017Figure4.png|thumb|500 px|center|'''Table I ''' List of reactants and their concentrations in a total volume of reaction of 100 µL. We also used | [[File:UchileBiotec2017Figure4.png|thumb|500 px|center|'''Table I ''' List of reactants and their concentrations in a total volume of reaction of 100 µL. We also used | ||
HEPES buffer 10 mM with 10 mM NaCl pH 7.1.]] | HEPES buffer 10 mM with 10 mM NaCl pH 7.1.]] | ||
+ | |||
+ | For more information about the methods used for these experiments, please visit [http://2017.igem.org/Team:UChile_Biotec/Experiments Protocols] in the Experiments section of our Wiki. | ||
<b>Results:</b> | <b>Results:</b> | ||
Line 77: | Line 79: | ||
<!-- --> | <!-- --> | ||
+ | |||
==<b>Sequence and Features</b>== | ==<b>Sequence and Features</b>== | ||
<partinfo>BBa_K2289000 SequenceAndFeatures</partinfo> | <partinfo>BBa_K2289000 SequenceAndFeatures</partinfo> |
Revision as of 23:20, 1 November 2017
STX Aptazyme J_3
Notice: Functional DNA
This part is a sequence of a functional ssDNA. It is only active as single-stranded DNA. It can not be cloned into a plasmid. For use order it as a DNA oligo.
This part is an Aptazyme, a noncoding single-stranded DNA molecule that combines 3 modules, an aptamer for the recognition of Saxitoxin (related to the red tide), a HRP-mimicking DNAzyme as a reporter for the presence of the toxin, and linkers that conect both domains (Aptamer and DNAzyme).
Aptazyme
Aptazyme is a ssDNA molecule that can recognize a ligand and catalyze a reaction. The funcionality of this molecule depends on three modules; an aptamer, for the recognition of a ligand, a DNAzyme, htat catalize a reaction and linkers, fundamental parts that can be complementary to specific zones of the Aptazyme, sequestring the catalytic zone of the molecule. The linkers are eseential, because they are placed in such a way that when the aptamer is not interacting with the ligand, the linkers are capturing the DNAzyme and altering the conformation of the DNAzyme (see Figure 1A).
When the aptamer interacts with the ligand, a conformational change takes place in the molecule, this conformational change promotes the movement of the linkers from the original place, and consequently the DNAzyme is released. Then, the DNAzyme can structure the catalytic conformation and catalyze the reaction (see Figure 1B).
This part (BBa_K2289002) consists on an Aptazyme that can recognise Saxitoxin (STX) and that can catalyse a chromogenic reaction with HRP-like enzymatic activity.
Modules
STX M30f Aptamer (Part:BBa_K2289004): It is an aptamer for saxitoxin, developed by Zheng et. al. 2015, this aptamer was selected by apool of aptamers. It has a dissociation constant (Kd) of 0.133 µM. The aptamer's secondary structure is on Figure 2A.
HRP-Mimicking DNAzyme (Part:BBa_K1614007): It is a DNAzyme developed by Travascio et. al. 1998. This DNAzyme, just as its name says, imitates the horseradish peroxidase catalytic activity, using hydrogen peroxide as a substrate and a reducing agent, it has been demonstrated that works well with a chromogenic reactant, ABTS. This DNAzyme needs Hemin to act as a catalyst, and when adopts a G-cuadruplex conformation allows the formation of a complex with Hemin, that, at the same time enables the DNAzyme to catalyse the reaction (see Figure 2B).
J_3 linkers: These are linkers generated by the JAWS software developed by Team Heidelberg 2015. Each linker binds to a specific zone of the molecule, allowing the inactive conformation of the Aptazyme. Those were calculated by the software to allow both conformations of the Aptazyme, the inactive one, and the active in the presence of the ligand. According to the software analysis, the DNAzyme with J_3 linkers has an inactive free energy of -12.55 Kcal/mol, and an active free energy of -6.76 Kcal/mol, with a free energy difference of 5.79 Kcal/mol.
All in one
Inactive fold: Inactive fold: We expect that the molecule folding in the absence of the toxin is the same as predicted by the [http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi RNAfold WebServer] (see Figure 3A), this prediction comes with a minimum free energy of -20.10 Kcal/mol
In the presence of the toxin: The expected conformation of the Aptazyme is on Figure 3B, we expect that when the toxin is present, the aptamer adopts
other conformation so the J_3 linkers can move releasing the DNAzyme just as described above.
Kinetics
Conditions: In order to evaluate the kinetics of our parts, we determined the amounts of each reactive present in the reaction, see table I, and we determined Fig 4, with those concentrations.
For more information about the methods used for these experiments, please visit [http://2017.igem.org/Team:UChile_Biotec/Experiments Protocols] in the Experiments section of our Wiki.
Results:
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
X. Zheng, B. Hu, SX. Gao, D.J. Liu, M.J. Sun, B.H. Jiao, L.H. Wang. (2015). A saxitoxin-binding aptamer whith higher affinity and inhibitory activity optimized by rational site-directed mutagenesis and truncation. Toxicon 101. 41-47.
P. Travascio, Y. Li, D. Sen. (1998). DNA-enghanced peroxidase activity of a DNA-aptamer-hemin complex. Chemistry and Biology, Vol 5 No 9. 505-517.
C. Teller, C Shimnron, I. Willner. (2009). Aptamer-DNAzyme Hairpins for Amplified Biosensing. Anal. Chem., 81. 9114-9119.