Difference between revisions of "Part:BBa K2382001"

(Characterization of the MSMEG_5998)
Line 98: Line 98:
  
 
<br style="clear: both" />
 
<br style="clear: both" />
 +
 +
 +
==Enzyme Function Results==
 +
===Enzyme Activity Assay===
 +
The conditions of reaction to degrade aflatoxin by MSMEG5998 were modified from Taylor’s study[6]. All concentrations of reactants are listed in Table 2 and 32 μM aflatoxin was used. We first mixed all reactants in eppendorfs and then put them at 22°C.
 +
</p>
 +
 +
[[File:Fig 7A (CSMU NCHU).png |450px|thumb|left|'''Figure 7''': MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (A) Direct 365 nm absorbance were detected after mixing Australian/synthetic MSMEG5998 and Australian/synthetic FGD and other reactants at 0th and 8th hour in the environment of pH=7.5 and 22℃.]]
 +
 +
<p align="justify">
 +
In Fig. 7A, we compared two proteins, MSMEG5998 and F420-dependent glucose-6-phosphate dehydrogenase (FGD) expressed from Taylor’s vectors (from Australia) and from our synthetic vectors. We found that both the Australian and synthetic MSMEG5998 have great activity and degraded aflatoxin B1 by more than 60%. The effect of the synthetic one may be better than the Australian one but there were no statistic significance.
 +
</p>
 +
<br style="clear: both" />
 +
 +
However, only Australian FGD has activity to reduce F420 into F420H2 and help the reaction. This finding corresponds with our dry lab results. Therefore, we used Australian and synthetic MSMEG5998 and Australian FGD to do the same experiment again to figure out whether the degradation percentage was dependent of time and whether the main reason of degradation was MSMEG5998.
 +
</p>
 +
<br style="clear: both" />
 +
 +
[[File:Fig 7B (CSMU NCHU).png |450px|thumb|left|'''Figure 7''': MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (B) The same way as (A) but Australian/synthetic MSMEG5998 and Australian FGD were used and the reaction were detected at 0th, 2nd, 4th, 6th, and 8th hour. a, p < 0.001 compared to the 0th hour of the synthetic MSMEG5998(+) group; b, p < 0.001 compared to the 0th hour of the Australian MSMEG5998(+) group; c, p < 0.001 compared to the same time of the Australian MSMEG5998(+) group.]]
 +
[[File:Fig 7C (CSMU NCHU).png |450px|thumb|left|'''Figure 7''': MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (A) Direct 365 nm absorbance were detected after mixing Australian/synthetic MSMEG5998 and Australian/synthetic FGD and other reactants at 0th and 8th hour in the environment of pH=7.5 and 22℃. (C) The same way as (B) but the degradation percentage were detected by ELISA. Because the initial concentration of aflatoxin (10000 ng/ml) was too high to be detected by the ELISA, we didn’t demonstrate the initial data.]]
 +
<p align="justify">
 +
 +
The results were detected by direct 365 nm absorbance (Fig. 7B) and by ELISA (Fig. 7C). We found out that the degradation percentage was time-dependent. The synthetic MSMEG5998 had better activity than Australian MSMEG5998. The former was able to degrade 83% aflatoxin after 8 h while the latter could only degrade 52% aflatoxin.
 +
 +
 +
  
 
===References===
 
===References===

Revision as of 13:57, 31 October 2017

MSMEG_5998


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 428
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage and Biology

This is an enzyme that could degrade aflatoxin with the aid of coenzyme F420. It belongs to the F420H2-dependent reductases family from Mycobacterium Smegmatis.


Characterization of the MSMEG_5998

Expression results

IPTG induction

MSMEG_5998 ( plasmid is from Australia) were transformed into E. coli BL21 (DE3) strain to express the protein. Then IPTG was used to induce the expression system, since the plasmid in our project had T7 promoter. We sonicated E. coli and did 9500 rpm and 13000 rpm centrifugation to remove the cell pellet and obtain the supernatant. To confirm the suitable concentration of cell supernatant, we do western blot. The results are demonstrated in figure 1. After centrifuging for two times, we could find a high percentage of proteins in the cell supernatant (the 13000 Su group). First, we transformed plasmid (encodes MSMEG_5998) from Australia into E. coli BL21 (DE3) strain to express protein. Then IPTG was used to induce the expression system since all plasmids in our project had T7 promoter. We sonicated E. coli and did 9500 rpm and 13000 rpm centrifugation to remove the cell pellet and obtain the supernatant. To confirm the suitable concentration of cell supernatant, we did SDS-PAGE electrophoresis and coomassie brilliant blue staining. The result is demonstrated in the Fig. 1A. After centrifuging two times, we could find a high percentage of proteins in the cell supernatant (the 13000 Su group).


Fig. 1A: Cell lysates were analyzed by SDS-PAGE and coomassie brilliant blue staining. 9500 T meant the initial sample obtained after sonication; 9500 P and 13000 T meant the pellet and the supernatant gotten after 9500 rpm for 20 min; 13000 P and 13000 Su meant the pellet and the supernatant obtained after 13000 rpm for 20 min.


Protein purification, and dialysis

After extracting the cell lysates, we used nickel-resin column to purify our target proteins from the cell lysates because all of our proteins were tagged with 6 histidines at their C-terminal ends. After protein purification, protein dialysis with diaysis buffer containing 150 mM NaCl, 20 mM Tris-HCl (pH=7.5), and 20% glycerol to remove imidazole in our purified proteins, we did SDS-PAGE gel electrophoresis to ensure our target proteins were successfully purified (Fig. 2A ). The molecular weights of these proteins are listed in the Table 1. The standard BSA proteins were used to quantify the concentration of target proteins.

Table 1: Two expressed recombinant proteins and their molecular weights are listed.

Proteins Molecular weight
Australian MSMEG5998 18.9 kDa
Australian FGD 37.7 kDa
Fig. 2A: Concentration of proteins was quantified by SDS-PAGE and standard BSA samples with 0.16, 0.31, 0.63, 1.25, 2.5, 5, 10 mg/ml. Two recombinant proteins were expressed by the plasmids from Australia.


Protein solubility analysis

To know whether the solubility of our two enzymes (MSMEG_5998 and FGD BBa_K2382002) increased after fusing enzymes with thioredoxin, we dissolved all cell lysates which containing pellet and supernatant and did western blot to detect the content of our target proteins. All proteins were detected by anti-6x His Tag antibody because all of them contained a 6-histidines tail when bacteria expressed them. In Fig. 3, we could find there was good expression of both Australian and synthetic MSMEG5998 in the “13000 Su” group when compared with the “13000 P” group. This result meant that most proteins were dissolved in the supernatant while few proteins deposited in the cell pellet after 13000-rpm centrifugation. However, we could not observe good solubility in both Australian and synthetic FGD because there were little or no difference between the “13000 Su” group and the “13000 P” group.

Figure 3: Cell lysates in the process of two times centrifuge were analyzed by western blot. The abbreviations of five groups were the same as Fig. 1.


Protein Expression Over Time

We transformed the plasmids that contained MSMEG_5998(BBa_K2382001) and Thioredoxin-MSMEG_5998 fusion protein(BBa_K2382009) respectively into competent cell E.coli BL21. After cultured overnight, measure the ABS600 and diluting the LB medium to O.D.=0.1. Then incubate at 37℃, 150 rpm until the O.D. of the samples reach 0.4 to 0.6 . Add 80ul 100mM IPTG( final concentration : 0.4mM ) to 125 ml flask and return to 37°C. From then on, after measure the O.D. values, transfer 1 ml from the induced sample and centrifuge at maximum speed for 60 seconds at RT and remove supernatant at 0, 1, 2, 3, 4, 5, 6, 7, 8 hours and 0, 0.5, 1.0, 1.5, 2.0 ,2.5 , 3.0, 3.5, 4 hours. Then we use Western Blot mehtod to amalyze the quantaty of MSMEG_5998 at each time spot. </p>


Discussion

Figure 1 : The growth curve of BL21 induced by IPTG from 0 to 4 hours. The concentration of BL21 reached stationary phase at 4 hours.

According to the data shown above, the growth curve of E.coli BL21 with Synthetic MSMEG_5998 reached the ceiling when the O.D. value was approximately at 2 while the amount of Synthetic MSMEG_5998 were still increasing.

Though the amount of Synthetic MSMEG_5998 increased consistently with time, we could not jump to conclusions that it was proper to incubate E.coli as long as possible. Another consideration was the time it would take. Just as our expected, it growed fast at the first 2.5 hours. That’s why we also chose 2.5hr after induced by IPTG when we extracted Synthetic MSMEG_5998 from total cell lysate in other experiments.

Figure 2 : The growth curve of BL21 from 0 to 8 hr. The concentration of BL21 reached stationary phase at 4 hours and then declined slightly.

Based on previous experience, if the E.coli was incubated over 4 hours, the protein that it expressed may be degraded or mis-folded, leading to malfunction. As a result, it was also an important issue for this modeling. However, because of the lack of F420, we did not have the chance to check the enzyme activity of each time spot. It was still unknown whether the titer of the Synthetic MSMEG_5998 would change or not and awaited further research.

Figure 3 : Cell lysates from E. coli BL21 with Synthetic MSMEG5998 from 0 to 8 hours and 0 to 4 hours were analyzed by Western blot. The amount of Synthetic MSMEG5998 increased consistently with time.



Enzyme Function Results

Enzyme Activity Assay

The conditions of reaction to degrade aflatoxin by MSMEG5998 were modified from Taylor’s study[6]. All concentrations of reactants are listed in Table 2 and 32 μM aflatoxin was used. We first mixed all reactants in eppendorfs and then put them at 22°C.

Figure 7: MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (A) Direct 365 nm absorbance were detected after mixing Australian/synthetic MSMEG5998 and Australian/synthetic FGD and other reactants at 0th and 8th hour in the environment of pH=7.5 and 22℃.

In Fig. 7A, we compared two proteins, MSMEG5998 and F420-dependent glucose-6-phosphate dehydrogenase (FGD) expressed from Taylor’s vectors (from Australia) and from our synthetic vectors. We found that both the Australian and synthetic MSMEG5998 have great activity and degraded aflatoxin B1 by more than 60%. The effect of the synthetic one may be better than the Australian one but there were no statistic significance.


However, only Australian FGD has activity to reduce F420 into F420H2 and help the reaction. This finding corresponds with our dry lab results. Therefore, we used Australian and synthetic MSMEG5998 and Australian FGD to do the same experiment again to figure out whether the degradation percentage was dependent of time and whether the main reason of degradation was MSMEG5998. </p>

Figure 7: MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (B) The same way as (A) but Australian/synthetic MSMEG5998 and Australian FGD were used and the reaction were detected at 0th, 2nd, 4th, 6th, and 8th hour. a, p < 0.001 compared to the 0th hour of the synthetic MSMEG5998(+) group; b, p < 0.001 compared to the 0th hour of the Australian MSMEG5998(+) group; c, p < 0.001 compared to the same time of the Australian MSMEG5998(+) group.
File:Fig 7C (CSMU NCHU).png
Figure 7: MSMEG5998 could significantly degrade aflatoxin at time manner in vitro. (A) Direct 365 nm absorbance were detected after mixing Australian/synthetic MSMEG5998 and Australian/synthetic FGD and other reactants at 0th and 8th hour in the environment of pH=7.5 and 22℃. (C) The same way as (B) but the degradation percentage were detected by ELISA. Because the initial concentration of aflatoxin (10000 ng/ml) was too high to be detected by the ELISA, we didn’t demonstrate the initial data.

The results were detected by direct 365 nm absorbance (Fig. 7B) and by ELISA (Fig. 7C). We found out that the degradation percentage was time-dependent. The synthetic MSMEG5998 had better activity than Australian MSMEG5998. The former was able to degrade 83% aflatoxin after 8 h while the latter could only degrade 52% aflatoxin.

References

(1)Taylor, M.C., et al., Identification and characterization of two families of F420H2‐dependent reductases from Mycobacteria that catalyse aflatoxin degradation. Molecular microbiology, 2010. 78(3): p. 561-575.

(2)Lapalikar, G.V., et al., F420H2-dependent degradation of aflatoxin and other furanocoumarins is widespread throughout the Actinomycetales. PLoS One, 2012. 7(2): p. e30114.