Difference between revisions of "Part:BBa K2348000"

Line 1: Line 1:
  
 
__NOTOC__
 
__NOTOC__
<partinfo>BBa_K2348000 short</partinfo>
+
<partinfo>BBa_K2348000 short</partinfo><p>
 
Alx was first described in 1990 by Bingham et al. They created over 93.00 operon fusion with lacZ and screened those for increased activity at pH 8.5. The locus they found was named alx. In 2009 the function of alx was characterised by Nechooshtan et al. They showed that the 5’ part of alx mRNA regulates translation by forming secondary structures. High pH leads to pausing in transcription of this mRNA part which leads to a different secondary structure allowing the ribosom to bind the RBS. Under neutral conditions the transcription is not stopped and secondary structures disable the ribosom to bind the RBS. This mechanism makes alx the first discovered pH-responsive riboregulatory gene.  
 
Alx was first described in 1990 by Bingham et al. They created over 93.00 operon fusion with lacZ and screened those for increased activity at pH 8.5. The locus they found was named alx. In 2009 the function of alx was characterised by Nechooshtan et al. They showed that the 5’ part of alx mRNA regulates translation by forming secondary structures. High pH leads to pausing in transcription of this mRNA part which leads to a different secondary structure allowing the ribosom to bind the RBS. Under neutral conditions the transcription is not stopped and secondary structures disable the ribosom to bind the RBS. This mechanism makes alx the first discovered pH-responsive riboregulatory gene.  
  
<!-- Add more about the biology of this part here
+
 
 
===Usage and Biology===
 
===Usage and Biology===
  

Revision as of 15:30, 30 October 2017


alx - alkaline regulated riboswitch

Alx was first described in 1990 by Bingham et al. They created over 93.00 operon fusion with lacZ and screened those for increased activity at pH 8.5. The locus they found was named alx. In 2009 the function of alx was characterised by Nechooshtan et al. They showed that the 5’ part of alx mRNA regulates translation by forming secondary structures. High pH leads to pausing in transcription of this mRNA part which leads to a different secondary structure allowing the ribosom to bind the RBS. Under neutral conditions the transcription is not stopped and secondary structures disable the ribosom to bind the RBS. This mechanism makes alx the first discovered pH-responsive riboregulatory gene.

Usage and Biology

We used this regulatory unit to express mNeonGreen under alkaline conditions. To increase expression an extra RBS was added after the riboswitch, leading to a constitutive expression of mNeonGreen . Hence, we used our constructed without the extra RBS to get pH depended expression but also showed that the riboswitch really is the regulatory part of this system. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 312