Difference between revisions of "Part:BBa K2332001"

Line 10: Line 10:
  
 
[[File:PblindBlueDark.png]]
 
[[File:PblindBlueDark.png]]
 +
 +
<center>'''Figure 1. Blue light inducible promoter (Pblind) characterisation.'''</center>
 
Figure 1. Blue light inducible promoter (Pblind) characterisation. J23151 is a constitutive promoter, R0040 is a TetR repressible promoter (repression inhibited only by the addition of tetracycline), Pblind promoter is a fusion of EL222 (photosensitive transcription factor) binding region and the luxI promoter, where EL222 is only able to dimerize and bind the Pblind promoter upon blue light exposure, where it can then recruit RNAP and drive the transcription of genes downstream. Wild type (WT) 10beta cells were transformed with J23151-GFP (positive control), R0040-GFP (negative control) or Pblind-GFP. All cells were grown overnight at 37°C in darkness or exposed to blue light (465nm) and diluted to OD600=0.6 to record GFP fluorescence. The data represents the mean of 3 biological replicates and 4 technical replicates for each condition. Luria broth (LB) was included as a baseline for the fluorescence. Error bars represent the SD and statistical significance of **** P < 0.0001 was calculated using the Tukey's multiple comparisons test.
 
Figure 1. Blue light inducible promoter (Pblind) characterisation. J23151 is a constitutive promoter, R0040 is a TetR repressible promoter (repression inhibited only by the addition of tetracycline), Pblind promoter is a fusion of EL222 (photosensitive transcription factor) binding region and the luxI promoter, where EL222 is only able to dimerize and bind the Pblind promoter upon blue light exposure, where it can then recruit RNAP and drive the transcription of genes downstream. Wild type (WT) 10beta cells were transformed with J23151-GFP (positive control), R0040-GFP (negative control) or Pblind-GFP. All cells were grown overnight at 37°C in darkness or exposed to blue light (465nm) and diluted to OD600=0.6 to record GFP fluorescence. The data represents the mean of 3 biological replicates and 4 technical replicates for each condition. Luria broth (LB) was included as a baseline for the fluorescence. Error bars represent the SD and statistical significance of **** P < 0.0001 was calculated using the Tukey's multiple comparisons test.
  

Revision as of 21:54, 23 October 2017


Blue light inducible expression system with GFP reporter (Pblind GFP)

This composite part consists of a blue-light inducible promoter (Pblind) upstream the gene encoding green fluorescence (GFP) codon optimized for E. coli. For blue-light transcriptional induction, cells must also express EL222 (BBa_K2332004). Pblind consists of a fusion of the EL222 DNA binding region and the LuxI promoter. The lux box, a 20bp inverted repeat (LuxR and 3-oxo-C6-HSL complex binding region) from the luxI promoter, was replaced with the 18bp DNA binding region of EL222, a natural photosensitive DNA-binding protein from the marine bacterium Erythrobacter litoralis HTCC2594. In the dark, EL222 is inactive as its N-terminal LOV domain represses its DNA-binding C-terminal HTH domain. Upon blue light exposure (450nm), LOV-HTH interaction is released, allowing it to dimerize and bind its binding region, overlapping the -35 region of the luxI promoter. This ultimately results in the recruitment of RNAP and transcriptional activation. In darkness, EL222 will reverse to its repressed state spontaneously. This optogenetic tool allows a dynamic, rapid and switchable transcriptional control. This biobrick allowed us to test the effectiveness of the Pblind promoter by measuring the basal transcription of GFP in the absence of the blue light transcriptional activator EL222.

This construct allowed us to test whether the promoter Pblind has any significant leakage. We wanted to show that GFP cannot be expressed in the absence of EL222. This is of particular interest as the aim of LIT is to demonstrate the versatility and high precision of light control. As shown in Figure1, only J23151-GFP (positive control) had a significant difference in fluorescence compared to R0040-GFP (negative control) WT cells and the Luria Broth (LB) in both dark and Blue-light conditions. Pblind-GFP had no significantly different fluorescence level compared to the LB baseline, negative control or WT cells in either condition. This is expected, as the EL222 protein is required for blue-light inducible transcriptional activation.

PblindBlueDark.png

Figure 1. Blue light inducible promoter (Pblind) characterisation.

Figure 1. Blue light inducible promoter (Pblind) characterisation. J23151 is a constitutive promoter, R0040 is a TetR repressible promoter (repression inhibited only by the addition of tetracycline), Pblind promoter is a fusion of EL222 (photosensitive transcription factor) binding region and the luxI promoter, where EL222 is only able to dimerize and bind the Pblind promoter upon blue light exposure, where it can then recruit RNAP and drive the transcription of genes downstream. Wild type (WT) 10beta cells were transformed with J23151-GFP (positive control), R0040-GFP (negative control) or Pblind-GFP. All cells were grown overnight at 37°C in darkness or exposed to blue light (465nm) and diluted to OD600=0.6 to record GFP fluorescence. The data represents the mean of 3 biological replicates and 4 technical replicates for each condition. Luria broth (LB) was included as a baseline for the fluorescence. Error bars represent the SD and statistical significance of **** P < 0.0001 was calculated using the Tukey's multiple comparisons test.


Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Unknown
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Unknown
  • 25
    INCOMPATIBLE WITH RFC[25]
    Unknown
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 709