Difference between revisions of "Part:BBa K2450201"

Line 15: Line 15:
 
TetR functions as a homodimer to bind tet operator sequences and prevent the association of RNA polymerase with its promoter. Each TetR monomer has a DNA binding domain and a dimerisation domain. The DNA binding domain is a helix-turn-helix motif that associates with a tet operator sequence (TCCCTATCAGTGATAGAGA). Our complementary part, BBa_K2450301, contains 2 repeats of this sequence - one for each monomer.
 
TetR functions as a homodimer to bind tet operator sequences and prevent the association of RNA polymerase with its promoter. Each TetR monomer has a DNA binding domain and a dimerisation domain. The DNA binding domain is a helix-turn-helix motif that associates with a tet operator sequence (TCCCTATCAGTGATAGAGA). Our complementary part, BBa_K2450301, contains 2 repeats of this sequence - one for each monomer.
  
TEV protease has a specific cleavage site of Glu-Asn-Leu-Tyr-Phe-Gln-(CUT)-Gly, which was inserted into our protein in a linker region between the DNA binding domain and the dimerisation domain.
+
TEV protease has a specific cleavage site of Glu-Asn-Leu-Tyr-Phe-Gln-(CUT)-Gly, which was inserted into our protein in a linker region between the DNA binding domain and the dimerisation domain. It is a direct replacement of seven amino acids in the middle of the linker region with the cleavage sequence, to minimise the perturbation on protein function.
  
[[File:Oxford_2017_modified_TetR_full.png|200px|thumb|left|Modified TetR]] On PyMOL, we identified the different domains of the TetR monomer, and identified a suitable linker for cleavage. On the image to the left, the DNA binding domain is coloured in blue, the dimerisation domain is pink, and the linker which has been modified is in grey.
+
[[File:Oxford_2017_modified_TetR_full.png|200px|thumb|left|Modified TetR]] On PyMOL, we identified the different domains of the TetR monomer, and identified a suitable linker for cleavage. On the image to the left, the DNA binding domain is coloured in blue, the dimerisation domain is pink, and the linker which has been modified is in grey. Structural biology was key to the design of our part, as we would otherwise have no idea where to insert our cleavable linker.
  
 
===References===
 
===References===
Line 25: Line 25:
 
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, et al. The TetR Family of Transcriptional Repressors. Microbiology and Molecular Biology Reviews. 2005;69(2):326-356. doi:10.1128/MMBR.69.2.326-356.2005.
 
Ramos JL, Martínez-Bueno M, Molina-Henares AJ, et al. The TetR Family of Transcriptional Repressors. Microbiology and Molecular Biology Reviews. 2005;69(2):326-356. doi:10.1128/MMBR.69.2.326-356.2005.
  
<!-- Uncomment this to enable Functional Parameter display
 
 
===Functional Parameters===
 
===Functional Parameters===
 
<partinfo>BBa_K2450201 parameters</partinfo>
 
<partinfo>BBa_K2450201 parameters</partinfo>
<!-- -->
 

Revision as of 18:03, 21 October 2017


TetR with TEV cleavage site and CFP tag

This part is a modified TetR repressor protein containing a cleavage site for TEV protease. It offers a new way of relieving repression of a DNA system. The cleavage site is located in the linker between the DNA binding domain and dimerisation domain of TetR. It also has a His-tag for easy purification in a nickel column. It is an improvement of a previous iGEM part.

The TetR repressor is only functional as a dimer. Each monomer has a DNA-binding domain and a dimerisation domain.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Usage and Biology

TetR functions as a homodimer to bind tet operator sequences and prevent the association of RNA polymerase with its promoter. Each TetR monomer has a DNA binding domain and a dimerisation domain. The DNA binding domain is a helix-turn-helix motif that associates with a tet operator sequence (TCCCTATCAGTGATAGAGA). Our complementary part, BBa_K2450301, contains 2 repeats of this sequence - one for each monomer.

TEV protease has a specific cleavage site of Glu-Asn-Leu-Tyr-Phe-Gln-(CUT)-Gly, which was inserted into our protein in a linker region between the DNA binding domain and the dimerisation domain. It is a direct replacement of seven amino acids in the middle of the linker region with the cleavage sequence, to minimise the perturbation on protein function.

Modified TetR
On PyMOL, we identified the different domains of the TetR monomer, and identified a suitable linker for cleavage. On the image to the left, the DNA binding domain is coloured in blue, the dimerisation domain is pink, and the linker which has been modified is in grey. Structural biology was key to the design of our part, as we would otherwise have no idea where to insert our cleavable linker.

References

Orth, P et al. Structural basis of gene regulation by the tetracycline inducible Tet repressor−operator system Nature Structural Biology 7, 215 - 219 (2000) doi:10.1038/73324

Ramos JL, Martínez-Bueno M, Molina-Henares AJ, et al. The TetR Family of Transcriptional Repressors. Microbiology and Molecular Biology Reviews. 2005;69(2):326-356. doi:10.1128/MMBR.69.2.326-356.2005.

Functional Parameters