Difference between revisions of "Part:BBa K2066114:Design"
(→Source) |
(→Design Notes) |
||
Line 7: | Line 7: | ||
===Design Notes=== | ===Design Notes=== | ||
− | + | We designed the part to include the synthetic enhancer suite and the NRII helper protein, which allows for the phosphorylation (activation) of the protein product of the synthetic enhancer product (NRI). Making one plasmid reduces the metabolic strain on the cell and further decouples the synthetic enhancer system from LacI/IPTG to allow for minimal inference of our circuits in the complete biological system. | |
− | + | ||
− | + | ||
===Source=== | ===Source=== |
Revision as of 01:36, 29 October 2016
Synthetic Enhancer: 3x TetO Binding Cassette (52s) + NRII on UNS
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 111
Illegal NheI site found at 206
Illegal NotI site found at 3773 - 21INCOMPATIBLE WITH RFC[21]Illegal XhoI site found at 171
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 951
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
We designed the part to include the synthetic enhancer suite and the NRII helper protein, which allows for the phosphorylation (activation) of the protein product of the synthetic enhancer product (NRI). Making one plasmid reduces the metabolic strain on the cell and further decouples the synthetic enhancer system from LacI/IPTG to allow for minimal inference of our circuits in the complete biological system.
Source
The enhancer, tet cassette, glnAp2 synthetic promoter, NRI coding region, and mCherry coding region sequences were derived from Amit, R., Garcia, H. G., Phillips, R. & Fraser, S. E. Building enhancers from the ground up: a synthetic biology approach. Cell146, 105–118 (2011). The NRII2302 coding region and the promoter that it is controlled by is derived from the helper plasmid pACT tet from Amit et. al 2011. The UNS sequences at the ends of the insert are derived from Torella, J. P., Boehm, C. R., Lienert, F., Chen, J. H., Way, J. C., & Silver, P. A. (2013). Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic acids research, gkt860. A huge thanks to all the researchers involved in its original creation!