Difference between revisions of "Part:BBa K2043005"

Line 1: Line 1:
 +
<b>Fabric Binding Domain 1 (BBa_K2043010) in the N-terminal</b> cloned by the Paris Bettencourt team in 2016 in the context of the Frank&Stain project. This enzymes originally comes from <i>Pseudomonas putida</i>, which we <b>codon optimised for <i>E. coli</i></b>.<br>
 +
In order to facilitate working with this enzyme, we added a <b>His-tag</b> at the <b>C-terminal</b>. This tag allows for purification in an easier way.<br><br>
 +
The <b>Fabric Binding Domain</b> has affinity for Cotton, Silk, Polyester, Linen and Nylon. It is positively charged (+1) and proline rich. <br><br>
  
__NOTOC__
+
We chose to work with this enzyme because it seemed to be a good candidate for degrading Anthocyanins. Anthocyanins, the key pigments present in wine, are polyphenolic molecules that are naturally found in many plants. Our project consisted in the degradation of wine strains, and therefore enzymes with the ability to degrade polyphenolic molecules were of interest to us. <br>
<partinfo>BBa_K2043005 short</partinfo>
+
In particular, Catechol-dioxygenases are good candidates because they degrade Catechol, which is structurally similar to Anthocyanins.<br><br>
  
xylE-FBD1 from Pseudomonas putida codon optimized for E. coli
+
<b>Testing the part</b><br><br>
  
<!-- Add more about the biology of this part here
+
We tested the activity of XylE using cell extract of cells expressing our protein. <br>
===Usage and Biology===
+
We tested our cell extract for XylE activity in Potassium Phosphate 100mM at pH 7.5, with 30mM of Catechol as substrate, as recommended in the literature. Measurements were taken after 12 min, timepoint after which all the substrate had been consumed. <br>
 +
Control corresponds to cells that do not express our proteins. In all cases, values measured correspond to reaction product. <br><br>
 +
https://static.igem.org/mediawiki/parts/5/50/Paris_Bettencourt_biobricks_xylE1.jpg <br><br>
 +
 
 +
As the image indicates, there is a clear difference between our native enzyme and the control. We measured the reaction product at 475nm, which results from the oxidation of Catechol. Since much more reaction product is produced with cells expressing XylE than in the control, we can affirm that the enzyme was functional. <br>
 +
Nonetheless, binding of the FBD1 in the N-terminal makes our protein unfunctional.
  
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
<partinfo>BBa_K2043005 SequenceAndFeatures</partinfo>
+
<partinfo>BBa_K2043011 SequenceAndFeatures</partinfo>
  
  
<!-- Uncomment this to enable Functional Parameter display
+
Kobayashi, T., Ishida, T., Horiike, K., Takahara, Y., Numao, N., Nakazawa, A., ... & Nozaki, M. (1995). Overexpression of Pseudomonas putida catechol 2, 3-dioxygenase with high specific activity by genetically engineered Escherichia coli. Journal of biochemistry, 117(3), 614-622. <br><br>
===Functional Parameters===
+
 
<partinfo>BBa_K2043005 parameters</partinfo>
+
Cerdan, P., Rekik, M., & Harayama, S. (1995). Substrate Specificity Differences Between Two Catechol 2, 3‐Dioxygenases Encoded by the TOL and NAH Plasmids from Pseudomonas putida. European journal of biochemistry, 229(1), 113-118.<br><br>
<!-- -->
+
 
 +
Francisco, J. A., Stathopoulos, C., Warren, R. A., Kilburn, D. G., & Georgiou, G. (1993). Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Bio/technology (Nature Publishing Company), 11(4), 491-495.<br><br>
 +
 
 +
Jain, P., Soshee, A., Narayanan, S. S., Sharma, J., Girard, C., Dujardin, E., & Nizak, C. (2014). Selection of arginine-rich anti-gold antibodies engineered for plasmonic colloid self-assembly. The Journal of Physical Chemistry C, 118(26), 14502-14510.<br><br>
 +
 
 +
Soshee, A., Zürcher, S., Spencer, N. D., Halperin, A., & Nizak, C. (2013). General in vitro method to analyze the interactions of synthetic polymers with human antibody repertoires. Biomacromolecules, 15(1), 113-121.<br><br>
  
<h1>xylE-FBD1</h1>
+
Boyer, S., Biswas, D., Soshee, A. K., Scaramozzino, N., Nizak, C., & Rivoire, O. (2016). Hierarchy and extremes in selections from pools of randomized proteins. Proceedings of the National Academy of Sciences, 201517813.<br><br>
  
        <pre>
+
NCBI Reference Sequence: NP_542866.1
              iWs                                ,W[
+
              W@@W.                             g@@[
+
            i@@@@@s                          g@@@@W
+
            @@@@@@@W.                      ,W@@@@@@
+
            ]@@@@@@@@@W.  ,_______.      ,m@@@@@@@@i
+
          ,@@@@@@@@@@@@W@@@@@@@@@@@@@@mm_g@@@@@@@@@@[
+
          d@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
+
          i@@@@@@@A*~~~~~VM@@@@@@@@@@Af~~~~V*@@@@@@@@@i
+
          @@@@@A~          'M@@@@@@A`        'V@@@@@@b
+
        d@@@*`              Y@@@@f              V@@@@@.
+
        i@@A`                M@@P                V@@@b
+
      ,@@A                  '@@                  !@@@.
+
      W@P                    @[                    '@@W
+
      d@@            ,        ]!                    ]@@b
+
    g@@[          ,W@@s      ]      ,W@@s          @@@i
+
    i@@@[          W@@@@i      ]      W@@@@i          @@@@i
+
  i@@@@[          @@@@@[      ]      @@@@@[          @@@@@i
+
  g@@@@@[          @@@@@!      @[      @@@@@[          @@@@@@i
+
d@@@@@@@          !@@@P      iAW      !@@@A          ]@@@@@@@i
+
W@@@@@@@@b          '~~      ,Z Yi      '~~          ,@@@@@@@@@
+
'*@@@@@@@@s                  Z`  Y.                ,W@@@@@@@@A
+
  'M@@@*f**W.              ,Z    Vs              ,W*~~~M@@@f
+
    'M@    'Vs.          ,z~      'N_          ,Z~    d@P
+
  M@@@      ~\-__  __z/` ,gmW@@mm_ '+e_.  __=/`      ,@@@@
+
    'VMW                  g@@@@@@@@@W    ~~~          ,WAf
+
      ~N.                @@@@@@@@@@@!                ,Z`
+
        V.              !M@@@@@@@@f                gf-
+
          'N.              '~***f~                ,Z`
+
            Vc.                                  _Zf
+
              ~e_                            ,gY~
+
                'V=_          -@@D        ,gY~ '
+
                    ~\=__.          ,__z=~`
+
                        '~~~*==Y*f~~~
+
        </pre>
+

Revision as of 19:54, 22 October 2016

Fabric Binding Domain 1 (BBa_K2043010) in the N-terminal cloned by the Paris Bettencourt team in 2016 in the context of the Frank&Stain project. This enzymes originally comes from Pseudomonas putida, which we codon optimised for E. coli.
In order to facilitate working with this enzyme, we added a His-tag at the C-terminal. This tag allows for purification in an easier way.

The Fabric Binding Domain has affinity for Cotton, Silk, Polyester, Linen and Nylon. It is positively charged (+1) and proline rich.

We chose to work with this enzyme because it seemed to be a good candidate for degrading Anthocyanins. Anthocyanins, the key pigments present in wine, are polyphenolic molecules that are naturally found in many plants. Our project consisted in the degradation of wine strains, and therefore enzymes with the ability to degrade polyphenolic molecules were of interest to us.
In particular, Catechol-dioxygenases are good candidates because they degrade Catechol, which is structurally similar to Anthocyanins.

Testing the part

We tested the activity of XylE using cell extract of cells expressing our protein.
We tested our cell extract for XylE activity in Potassium Phosphate 100mM at pH 7.5, with 30mM of Catechol as substrate, as recommended in the literature. Measurements were taken after 12 min, timepoint after which all the substrate had been consumed.
Control corresponds to cells that do not express our proteins. In all cases, values measured correspond to reaction product.

Paris_Bettencourt_biobricks_xylE1.jpg

As the image indicates, there is a clear difference between our native enzyme and the control. We measured the reaction product at 475nm, which results from the oxidation of Catechol. Since much more reaction product is produced with cells expressing XylE than in the control, we can affirm that the enzyme was functional.
Nonetheless, binding of the FBD1 in the N-terminal makes our protein unfunctional.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Kobayashi, T., Ishida, T., Horiike, K., Takahara, Y., Numao, N., Nakazawa, A., ... & Nozaki, M. (1995). Overexpression of Pseudomonas putida catechol 2, 3-dioxygenase with high specific activity by genetically engineered Escherichia coli. Journal of biochemistry, 117(3), 614-622.

Cerdan, P., Rekik, M., & Harayama, S. (1995). Substrate Specificity Differences Between Two Catechol 2, 3‐Dioxygenases Encoded by the TOL and NAH Plasmids from Pseudomonas putida. European journal of biochemistry, 229(1), 113-118.

Francisco, J. A., Stathopoulos, C., Warren, R. A., Kilburn, D. G., & Georgiou, G. (1993). Specific adhesion and hydrolysis of cellulose by intact Escherichia coli expressing surface anchored cellulase or cellulose binding domains. Bio/technology (Nature Publishing Company), 11(4), 491-495.

Jain, P., Soshee, A., Narayanan, S. S., Sharma, J., Girard, C., Dujardin, E., & Nizak, C. (2014). Selection of arginine-rich anti-gold antibodies engineered for plasmonic colloid self-assembly. The Journal of Physical Chemistry C, 118(26), 14502-14510.

Soshee, A., Zürcher, S., Spencer, N. D., Halperin, A., & Nizak, C. (2013). General in vitro method to analyze the interactions of synthetic polymers with human antibody repertoires. Biomacromolecules, 15(1), 113-121.

Boyer, S., Biswas, D., Soshee, A. K., Scaramozzino, N., Nizak, C., & Rivoire, O. (2016). Hierarchy and extremes in selections from pools of randomized proteins. Proceedings of the National Academy of Sciences, 201517813.

NCBI Reference Sequence: NP_542866.1