Difference between revisions of "Part:BBa K2036013"
Shareycheng (Talk | contribs) |
|||
Line 18: | Line 18: | ||
<partinfo>BBa_K2036013 parameters</partinfo> | <partinfo>BBa_K2036013 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | <h2>Protein&promoter</h2> | ||
+ | <p>--CII and pRE</p> | ||
+ | <br> | ||
+ | <p> | ||
+ | CII (BBa_K2036000) functions as a transcriptional activator to direct promoter RE, so we constructed CII-TT-pRE-RBS-GFP-LVAssrAtag as test group and pRE-RBS-GFPLVAssrAtag as CK to see if CII efficiently activate pRE. | ||
+ | </p> | ||
+ | <br> | ||
+ | [[File:T--HUST-China--CII-pRE_plate.png|800px|thumb|center|Fig2: According to the Flourescence measurement curve above, we can see clearly that GFP level increased over time and it showed significant difference from CK.]] | ||
+ | <br> | ||
+ | [[File:T--HUST-China--Experiments-CII-pRE_Flou-detec.png|800px|thumb|center|Fig3: We also did Fluorescence microscope detection after 30, 120 and 240 minutes induction. According to the figture below, we can tell qualitively that pRE leakage are at relative low level and CII can efficiently activate the promoter.]] | ||
+ | <h2>Protein&protein reaction</h2> | ||
+ | |||
+ | <p> | ||
+ | We had submitted and documented RBS-CIII-RBS-CIII-RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036014) and RBS-CII-RBS-CII-RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036015). These two parts were to test whether CIII can protect CII from being degraded by Ftsh by competitive inhibition. | ||
+ | </p> | ||
+ | <br> | ||
+ | [[File:T--HUST-China--CIII%26Ftsh.png|800px|thumb|center|Fig4: According to the Flourescence measurement curve above, we can see clearly that GFP level of CIII test circuit increased over time and it showed significant difference from two control groups. It indicates that tandomly expressed CIII can efficiently protect CII from being degraded by Ftsh. ]] |
Revision as of 16:55, 19 October 2016
RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag
It is a GFP regulationary circuits. When CII is expressed it can further activate GFP and forming a Switching Lag-times. HUST-China 2016 build this part to characterize CII and pRE interaction with a control group:pRE-GFP-LVAssrAtag ( BBa_K2036011). And we also construct a tandem expression of CII (BBa_K2036015)to figure out if the flouresence level will come up with CII.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 1168
Protein&promoter
--CII and pRE
CII (BBa_K2036000) functions as a transcriptional activator to direct promoter RE, so we constructed CII-TT-pRE-RBS-GFP-LVAssrAtag as test group and pRE-RBS-GFPLVAssrAtag as CK to see if CII efficiently activate pRE.
Protein&protein reaction
We had submitted and documented RBS-CIII-RBS-CIII-RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036014) and RBS-CII-RBS-CII-RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036015). These two parts were to test whether CIII can protect CII from being degraded by Ftsh by competitive inhibition.