Difference between revisions of "Part:BBa K2036011"
Shareycheng (Talk | contribs) |
|||
Line 18: | Line 18: | ||
<partinfo>BBa_K2036011 parameters</partinfo> | <partinfo>BBa_K2036011 parameters</partinfo> | ||
<!-- --> | <!-- --> | ||
+ | <h2>Protein&promoter</h2> | ||
+ | <p>--CII and pRE</p> | ||
+ | <br> | ||
+ | <p> | ||
+ | CII (BBa_K2036000) functions as a transcriptional activator to direct promoter RE, so we constructed CII-TT-pRE-RBS-GFP-LVAssrAtag as test group and pRE-RBS-GFPLVAssrAtag as CK to see if CII efficiently activate pRE. | ||
+ | </p> | ||
+ | <br> | ||
+ | [[File:T--HUST-China--CII-pRE_plate.png|800px|thumb|center|Fig2: According to the Flourescence measurement curve above, we can see clearly that GFP level increased over time and it showed significant difference from CK.]] | ||
+ | <br> | ||
+ | [[File:T--HUST-China--Experiments-CII-pRE_Flou-detec.png|800px|thumb|center|Fig3: We also did Fluorescence microscope detection after 30, 120 and 240 minutes induction. According to the figture below, we can tell qualitively that pRE leakage are at relative low level and CII can efficiently activate the promoter.]] |
Revision as of 16:38, 19 October 2016
pRE-GFP-LVAssrAtag
It is a GFP generator,and the production of GFP will be activated by a certain level of CII or CII with help of CIII in E.coli.
HUST-China 2016 built this circuit to characterize CII and pRE interaction with test group:RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036013)and RBS-CII-RBS-CII-RBS-CII-TT-pRE-RBS-GFP-LVAssrAtag (BBa_K2036015)
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 719
Protein&promoter
--CII and pRE
CII (BBa_K2036000) functions as a transcriptional activator to direct promoter RE, so we constructed CII-TT-pRE-RBS-GFP-LVAssrAtag as test group and pRE-RBS-GFPLVAssrAtag as CK to see if CII efficiently activate pRE.