Difference between revisions of "Part:BBa K1959003"

(Usage and Biology)
Line 8: Line 8:
 
===Usage and Biology===
 
===Usage and Biology===
 
 As a strong antioxidant, astaxanthin synthesis, especially, its biosynthesis attracts much interest of scientists. BKT symmetrically introduces two keto groups to two β-ionone rings of zeaxanthin to generate astaxanthin in algae (Figure.1).<br> In our reconstructed pathway, the CDS of ''BKY'' was codon-optimized for rice. In addition, a ''Pea'' transit peptide was fused to the BKY for proper sorting into the plastid.  
 
 As a strong antioxidant, astaxanthin synthesis, especially, its biosynthesis attracts much interest of scientists. BKT symmetrically introduces two keto groups to two β-ionone rings of zeaxanthin to generate astaxanthin in algae (Figure.1).<br> In our reconstructed pathway, the CDS of ''BKY'' was codon-optimized for rice. In addition, a ''Pea'' transit peptide was fused to the BKY for proper sorting into the plastid.  
 
+
[[File:T--SCAU-China--BHY-P.jpg |500px|thumb|centre|<p>'''Figure. 1 The reconstructed biosynthesis pathway of astaxanthin in the endosperm of aSTARice.'''<br>The dotted arrows indicate pathway is absent in rice endosperm. The solid arrows indicate the existence of carotenogenic reactions. The red arrows indicate the reactions catalyzed by four exogenous transgenic ''PSY'', ''CrtI'', ''BHY''and ''BKT''.</p>]]
  
  

Revision as of 16:14, 19 October 2016


BKT coding sequence fused with Pea transit peptide

This part contains the coding sequence (CDS) of β-carotene ketolase (BKT, EC 1.14.11.B16) of algae (Chlamydomonas reinhardti), which catalyzes the conversion of zeaxanthin to astaxanthin. A Pea transit peptide of RUBISCO small subunit has been fused to BKT and the codon has been optimized for rice (Oryza sativa).


Usage and Biology

 As a strong antioxidant, astaxanthin synthesis, especially, its biosynthesis attracts much interest of scientists. BKT symmetrically introduces two keto groups to two β-ionone rings of zeaxanthin to generate astaxanthin in algae (Figure.1).
 In our reconstructed pathway, the CDS of BKY was codon-optimized for rice. In addition, a Pea transit peptide was fused to the BKY for proper sorting into the plastid.

Figure. 1 The reconstructed biosynthesis pathway of astaxanthin in the endosperm of aSTARice.
The dotted arrows indicate pathway is absent in rice endosperm. The solid arrows indicate the existence of carotenogenic reactions. The red arrows indicate the reactions catalyzed by four exogenous transgenic PSY, CrtI, BHYand BKT.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 1085
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 478
    Illegal SapI site found at 900