Difference between revisions of "Part:BBa K2030000"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K2030000 short</partinfo> | <partinfo>BBa_K2030000 short</partinfo> | ||
The upstream regulatory sequence to the gene <i>AQR1</i>, coding for a transporter that facilitates secretion of excess amino acids. It is induced by amino acids [1]. | The upstream regulatory sequence to the gene <i>AQR1</i>, coding for a transporter that facilitates secretion of excess amino acids. It is induced by amino acids [1]. | ||
+ | ===Characterization=== | ||
+ | A promoter study was performed to characterize this promoter. The <i>AQR1</i> promoter was cloned into the replicative plasmid p416tef by replacing the existing pTEF1 promoter and adding GFP as a reporter gene. By using a replicative plasmid instead of chromosomal integration, a higher copy number can be achieved, which will make sure that even weak promoters give a detectable signal. For the glucose conditions, the cells were grown as a preculture in SD -URA + 2 % glucose media overnight, diluted to OD<SUB>600</SUB>=0.3 in the same media and cultivated for 3 hours. The expression of GFP was measured in a 96-well plates (NUNC 96) in a BMG Labtech FLUOstar Omega plate reader with triplicate samples using the following setting: 20 flashes per well, excitation/emission wavelength at 485/520 nm and gain set to 800. | ||
+ | The cells were also grown in SD -URA + 0.5 % acetate to compare the expression levels when acetate was the only carbon source, which is connected to our coculture project. For the acetate experiment, the cells were grown as a preculture in SD -URA + 2 % glucose media overnight, washed and diluted to OD<SUB>600</SUB>=0.3 in SD -URA + 0.5 % acetate and cultivated for 24 hours before plate reader measurements. The longer cultivation time was due to slow growth with acetate as the carbon source. Furthermore, the reason for the longer cultivation time was to make sure that the GFP produced during the preculture in glucose was degraded. | ||
+ | |||
+ | The experiment was also done with the promoters [https://parts.igem.org/Part:BBa_K2030004 pGLN1], [https://parts.igem.org/Part:BBa_K2030001 pPCK1], [https://parts.igem.org/Part:BBa_K2030003 pPYK2] and [https://parts.igem.org/Part:BBa_K319003 pTEF1] in the same way, and the results compared against each other. The raw data from the promoter study was normalized against OD<SUB>600</SUB> of that sample, and the mean value of the negative control (cells with p416tef without GFP) was subtracted. The results are shown in <b>Table 1</b>. | ||
+ | |||
+ | <br><center><b>Table 1.</b> Fluorescent levels of GFP under the control of the promoters pAQR1, pGLN1, pPCK1, <br>PYK2 and pTEF1 for cells cultivated in SD -URA media + 2 % glucose or 0.5 % acetate (n=3). | ||
+ | <html> | ||
+ | <style type="text/css"> | ||
+ | .tg {border-collapse:collapse;border-spacing:0;} | ||
+ | .tg td{font-family:Arial, sans-serif;font-size:14px;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;} | ||
+ | .tg th{font-family:Arial, sans-serif;font-size:14px;font-weight:normal;padding:10px 5px;border-style:solid;border-width:1px;overflow:hidden;word-break:normal;} | ||
+ | .tg .tg-baqh{text-align:center;vertical-align:top} | ||
+ | .tg .tg-804w{font-family:Arial, Helvetica, sans-serif !important;;text-align:center;vertical-align:top} | ||
+ | .tg .tg-9hbo{font-weight:bold;vertical-align:top} | ||
+ | .tg .tg-amwm{font-weight:bold;text-align:center;vertical-align:top} | ||
+ | .tg .tg-yw4l{vertical-align:top} | ||
+ | </style> | ||
+ | <div align="center"> | ||
+ | <table class="tg"> | ||
+ | <tr> | ||
+ | <th class="tg-9hbo">Promoter</th> | ||
+ | <th class="tg-amwm" colspan="2">Condition</th> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-9hbo"></td> | ||
+ | <td class="tg-baqh">Glucose (fluorescent unit/OD<SUB>600</SUB>)<br></td> | ||
+ | <td class="tg-baqh">Acetate (fluorescent unit/OD<SUB>600</SUB>)</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-yw4l">pAQR1<br></td> | ||
+ | <td class="tg-804w">303</td> | ||
+ | <td class="tg-baqh">63</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-yw4l">pGLN1<br></td> | ||
+ | <td class="tg-baqh">862</td> | ||
+ | <td class="tg-baqh">426</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-yw4l">pPCK1</td> | ||
+ | <td class="tg-baqh">235</td> | ||
+ | <td class="tg-baqh">1721</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-yw4l">pPYK2</td> | ||
+ | <td class="tg-baqh">125</td> | ||
+ | <td class="tg-baqh">77</td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td class="tg-yw4l">pTEF1</td> | ||
+ | <td class="tg-baqh">1314</td> | ||
+ | <td class="tg-baqh">1399</td> | ||
+ | </tr> | ||
+ | </table> | ||
+ | |||
+ | </html> | ||
+ | </center> | ||
+ | <br> | ||
+ | <p>In <b>Figure 1</b> the results are normalized against the expression level of the pTEF1 promoter.</p> | ||
− | |||
+ | [[Image:T--Chalmers Gothenburg--glucose-acetate-relative.png|800px|thumb|center|Figure 1: Fluorescent levels of GFP under the control of the promoters pAQR1, pGLN1, pPCK1, PYK2 and pTEF1 in glucose and acetate conditions relative the levels of pTEF1. Triplicate runs were made for each promoter and error bars are shown as confidence intervals with p=0.05, using student's t-test.]] | ||
+ | ===Uploads=== | ||
+ | <html><a href="https://static.igem.org/mediawiki/parts/6/65/T--Chalmers_Gothenburg-promoter-study-data.pdf">Promoter study data</a> | ||
+ | </html> | ||
<!-- --> | <!-- --> |
Revision as of 12:01, 19 October 2016
pAQR1 S. cerevisiae promoter
The upstream regulatory sequence to the gene AQR1, coding for a transporter that facilitates secretion of excess amino acids. It is induced by amino acids [1].
Characterization
A promoter study was performed to characterize this promoter. The AQR1 promoter was cloned into the replicative plasmid p416tef by replacing the existing pTEF1 promoter and adding GFP as a reporter gene. By using a replicative plasmid instead of chromosomal integration, a higher copy number can be achieved, which will make sure that even weak promoters give a detectable signal. For the glucose conditions, the cells were grown as a preculture in SD -URA + 2 % glucose media overnight, diluted to OD600=0.3 in the same media and cultivated for 3 hours. The expression of GFP was measured in a 96-well plates (NUNC 96) in a BMG Labtech FLUOstar Omega plate reader with triplicate samples using the following setting: 20 flashes per well, excitation/emission wavelength at 485/520 nm and gain set to 800.
The cells were also grown in SD -URA + 0.5 % acetate to compare the expression levels when acetate was the only carbon source, which is connected to our coculture project. For the acetate experiment, the cells were grown as a preculture in SD -URA + 2 % glucose media overnight, washed and diluted to OD600=0.3 in SD -URA + 0.5 % acetate and cultivated for 24 hours before plate reader measurements. The longer cultivation time was due to slow growth with acetate as the carbon source. Furthermore, the reason for the longer cultivation time was to make sure that the GFP produced during the preculture in glucose was degraded.
The experiment was also done with the promoters pGLN1, pPCK1, pPYK2 and pTEF1 in the same way, and the results compared against each other. The raw data from the promoter study was normalized against OD600 of that sample, and the mean value of the negative control (cells with p416tef without GFP) was subtracted. The results are shown in Table 1.
PYK2 and pTEF1 for cells cultivated in SD -URA media + 2 % glucose or 0.5 % acetate (n=3).
Promoter | Condition | |
---|---|---|
Glucose (fluorescent unit/OD600) |
Acetate (fluorescent unit/OD600) | |
pAQR1 |
303 | 63 |
pGLN1 |
862 | 426 |
pPCK1 | 235 | 1721 |
pPYK2 | 125 | 77 |
pTEF1 | 1314 | 1399 |
In Figure 1 the results are normalized against the expression level of the pTEF1 promoter.
Uploads
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
[1]: Velasco, I., Tenreiro, S., Calderon, I.L. and André, B., 2004. Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids. Eukaryotic Cell, 3(6), pp.1492-1503.