Difference between revisions of "Part:BBa K1654007"

(Usage and Biology)
(Usage and Biology)
Line 12: Line 12:
 
<partinfo>BBa_K1654007 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K1654007 SequenceAndFeatures</partinfo>
 
===Usage and Biology===
 
===Usage and Biology===
 +
    To get the protein of interest anchored to the surface of L. lactis, it should be secreted out of the cell first. The solution is a signal peptide from the Usp45 protein which is secreted out of L. lactis very efficiently. Fusion of the signal peptide of Usp45 to a couple of proteins resulted in an efficient way of secreting the coded proteins into the media. The fusion protein will meet a chaperone protein, SecB, which bring the fusion protein to a protein secretion apparatus. This apparatus cleaves the signal peptide and frees the proteins from the cell.
 +
    The protein of interest is fused to the cA domain with the USP45 signal peptide, driven by the PnisZ promoter and followed by the nisin resistant gene nsr. To demonstrate the utility of the protein surface display, here we took the β-galactosidase protein as a proof of concept.
 +
    To demonstrate whether cA could indeed anchor the protein of interest at the surface of L. lactis, the pLacZ-Cytosol and pLacZ-Surface plasmids were introduced into NZ9000 respectively. As stated above, the cA domain is derived from the AcmA protein, which is an autolysin of L. latis that cleaves the peptidoglycan to release the duplicated bacteria. Since the substrate peptidoglycan is now occupied by the cA-β-galactosidase fusion proteins, the AcmA autolysin activity is hindered, thus cell separation will be interfered. Indeed, we found that under microscopic, the NZ-Surface cells were poorly separated compared to the NZ-Cytosol strain. Further more, using a polyclonal antibody against β-galactosidase, we found that about 70% of the β-galactosidase protein is present at the cell wall, while the other 30% protein is present in the cytoplasm, perhaps due to the inefficient secretion process. In contrast, all theβ-galactosidase proteins were present in the cytoplasm in the NZ-cytosol strain.
 +
 
[[File:Fig 6 cA.jpg]]
 
[[File:Fig 6 cA.jpg]]
  

Revision as of 02:21, 12 October 2016


USP45 secretion tag for Lactococcus lactis

USP45 secretion tag used in Lactococcus lactis to secrete the protein outside the cell.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Usage and Biology

   To get the protein of interest anchored to the surface of L. lactis, it should be secreted out of the cell first. The solution is a signal peptide from the Usp45 protein which is secreted out of L. lactis very efficiently. Fusion of the signal peptide of Usp45 to a couple of proteins resulted in an efficient way of secreting the coded proteins into the media. The fusion protein will meet a chaperone protein, SecB, which bring the fusion protein to a protein secretion apparatus. This apparatus cleaves the signal peptide and frees the proteins from the cell.
   The protein of interest is fused to the cA domain with the USP45 signal peptide, driven by the PnisZ promoter and followed by the nisin resistant gene nsr. To demonstrate the utility of the protein surface display, here we took the β-galactosidase protein as a proof of concept.
   To demonstrate whether cA could indeed anchor the protein of interest at the surface of L. lactis, the pLacZ-Cytosol and pLacZ-Surface plasmids were introduced into NZ9000 respectively. As stated above, the cA domain is derived from the AcmA protein, which is an autolysin of L. latis that cleaves the peptidoglycan to release the duplicated bacteria. Since the substrate peptidoglycan is now occupied by the cA-β-galactosidase fusion proteins, the AcmA autolysin activity is hindered, thus cell separation will be interfered. Indeed, we found that under microscopic, the NZ-Surface cells were poorly separated compared to the NZ-Cytosol strain. Further more, using a polyclonal antibody against β-galactosidase, we found that about 70% of the β-galactosidase protein is present at the cell wall, while the other 30% protein is present in the cytoplasm, perhaps due to the inefficient secretion process. In contrast, all theβ-galactosidase proteins were present in the cytoplasm in the NZ-cytosol strain.

Fig 6 cA.jpg