Difference between revisions of "Part:BBa K1632011:Experience"

Line 13: Line 13:
 
(6) PBAD/''araC''_''fimE''(wild-type) (pSB6A1) + rbs_gfp (pSB3K3) …negative control 2 <br>
 
(6) PBAD/''araC''_''fimE''(wild-type) (pSB6A1) + rbs_gfp (pSB3K3) …negative control 2 <br>
  
[[Image:Tokyo_Tech_FimE_assay.png|thumb|center|900px|<b>Fig. 1. </b>Plasmids]]<br>
+
[[Image:Tokyo_Tech_FimE_assay.png|thumb|center|900px|<b>Fig. 5. </b>Plasmids]]<br>
  
 
====Flow cytometer====
 
====Flow cytometer====
Line 43: Line 43:
 
=====Results=====
 
=====Results=====
  
[[Image:Tokyo_Tech_FimE_assay_Results.png |thumb|center|700px|<b>Fig. 2. </b>The histograms of the samples measured by flow cytometer]]<br>
+
[[Image:Tokyo_Tech_FimE_assay_Results.png |thumb|center|700px|<b>Fig. 6. </b>The histograms of the samples measured by flow cytometer]]<br>
  
 
=====Discussion=====
 
=====Discussion=====
<span style="margin-left: 10px;">We tried to confirm that <i>fim</i> switch is predominantly inverted in the presence of FimE(wild-type) by using GFP as a reporter, under 4 different concentrations of arabinose. In the medium with 0 M arabinose, we supplemented the medium with 1.0 % glucose in order to repress the leakage in the PBAD/''araC'' promoter. Fig. 2 shows the histograms of the samples measured by the flow cytometer. In the results of the reporter cell (1), when the induction of FimE(wild-type) expression increases, the fluorescence intensity decreases. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted from [ON] state to [OFF] state by FimE(wild-type). From the result of the reporter cell (2), even when the expression amount of FimE(wild-type) increases, the expression amount of GFP in the reporter cell (2) does not change. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted only from [ON] state to [OFF] state by FimE(wild-type). From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the <i>fim</i> switch(wild-type) only from [ON] state to [OFF] state.<br>
+
<span style="margin-left: 10px;">We tried to confirm that <i>fim</i> switch is predominantly inverted in the presence of FimE(wild-type) by using GFP as a reporter, under 4 different concentrations of arabinose. In the medium with 0 M arabinose, we supplemented the medium with 1.0 % glucose in order to repress the leakage in the PBAD/''araC'' promoter. Fig. 6 shows the histograms of the samples measured by the flow cytometer. In the results of the reporter cell (1), when the induction of FimE(wild-type) expression increases, the fluorescence intensity decreases. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted from [ON] state to [OFF] state by FimE(wild-type). From the result of the reporter cell (2), even when the expression amount of FimE(wild-type) increases, the expression amount of GFP in the reporter cell (2) does not change. From this fact, we confirmed that the <i>fim</i> switch(wild-type) is inverted only from [ON] state to [OFF] state by FimE(wild-type). From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the <i>fim</i> switch(wild-type) only from [ON] state to [OFF] state.<br>
  
 
<span style="margin-left: 10px;">The results of Positive control 1 and Negative control 1 confirmed that the endogenous FimB and FimE did not invert our fim switch(wild-type). Also, the result of Positive control 2 and Negative control 2, indicates that the expression of FimE(wild-type) do not affect GFP expression.
 
<span style="margin-left: 10px;">The results of Positive control 1 and Negative control 1 confirmed that the endogenous FimB and FimE did not invert our fim switch(wild-type). Also, the result of Positive control 2 and Negative control 2, indicates that the expression of FimE(wild-type) do not affect GFP expression.
Line 72: Line 72:
  
 
=====Results=====
 
=====Results=====
[[Image:Tokyo_Tech_FLA_FImE_.png |thumb|center|700px|<b>Fig. 3. </b>The histograms of the samples measured by flow cytometer]]<br>
+
[[Image:Tokyo_Tech_FLA_FImE_.png |thumb|center|700px|<b>Fig. 7. </b>The histograms of the samples measured by flow cytometer]]<br>
[[Image:Tokyo_Tech_sequence_FimE.png |thumb|center|700px|<b>Fig. 4. </b>The histograms of the samples measured by flow cytometer]]<br>
+
[[Image:Tokyo_Tech_sequence_FimE.png |thumb|center|700px|<b>Fig. 8. </b>The histograms of the samples measured by flow cytometer]]<br>
 
=====Discussion=====
 
=====Discussion=====
We counted out the all colonies and those with fluorescence. In the results of the reporter cell (1), when inducing the expression of FimE(wild-type), the percentage of [ON] state decreased dramatically. On the other hand, from the results of the reporter cell (2), when inducing the expression of FimE(wild-type), the percentage of [ON] state remained being small. From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the <i>fim</i> switch(wild-type) predominantly from [ON] state to [OFF] state. (Fig.3). This result was consistent with the histograms (Fig.2.).Also, we incubated the colonies with fluorescence and those without fluorescence. We minipreped cell culture. Sequence complementarity in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all sample (Fig.4.).  
+
We counted out the all colonies and those with fluorescence. In the results of the reporter cell (1), when inducing the expression of FimE(wild-type), the percentage of [ON] state decreased dramatically. On the other hand, from the results of the reporter cell (2), when inducing the expression of FimE(wild-type), the percentage of [ON] state remained being small. From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the <i>fim</i> switch(wild-type) predominantly from [ON] state to [OFF] state. (Fig.7). This result was consistent with the histograms (Fig.6.).Also, we incubated the colonies with fluorescence and those without fluorescence. We minipreped cell culture. Sequence complementarity in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all sample (Fig.8.).  
  
 
For more information, see [http://2015.igem.org/Team:Tokyo_Tech/Project our work in Tokyo_Tech 2015 wiki].
 
For more information, see [http://2015.igem.org/Team:Tokyo_Tech/Project our work in Tokyo_Tech 2015 wiki].

Revision as of 03:16, 19 September 2015

Materials and Methods

Construction

All the samples were DH5alpha strain with antibiotic resistance to ampicillin and kanamycin.

(1) PBAD/araC_fimE(wild-type) (pSB6A1) + fim switch[default ON](wild-type)_gfp (pSB3K3)
(2) PBAD/araC_fimE(wild-type) (pSB6A1) + fim switch[default OFF](wild-type)_gfp (pSB3K3)
(3) pSB6A1 + fim switch[default ON](wild-type)_gfp (pSB3K3) …positive control 1
(4) pSB6A1 + fim switch[default OFF](wild-type)_gfp (pSB3K3) …negative control 1
(5) PBAD/araC_fimE(wild-type) (pSB6A1) + J23119_gfp (pSB3K3) …positive control 2
(6) PBAD/araC_fimE(wild-type) (pSB6A1) + rbs_gfp (pSB3K3) …negative control 2

Fig. 5. Plasmids

Flow cytometer

Assay protocol

1. Prepare overnight cultures for each sample in 3 mL of LB medium containing ampicillin (50 microg / mL), kanamycin (30 microg / mL) and glucose (final concentration is 1.0 %) at 37 ℃ for 12h.
2. Make a 1:100 dilution in 3 mL of fresh LB containing Amp, Kan and glucose (final concentration is 1.0 %).
3. Incubate the cells at 37 ℃, shaking at 180 rpm until the observed OD590 reaches 0.4 (Fresh Culture).
4. After the incubation, take 1 mL of the samples, and centrifuge at 5000x g, 1 min, 25 ℃
5. Remove the supernatant.
6. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃
7. Remove the supernatant.
8. Suspend the pellet in 1 mL of LB containing Amp and Kan, and centrifuge at 5000x g, 1 min, 25 ℃
9. Remove the supernatant.
10. Suspend the pellet in 1mL of LB containing Amp and Kan.
11. Add 30 microL of suspension in the following medium.
① 3 mL of LB containing Amp, Kan, glucose (final concentration is 1.0 %) and 30 microL sterile water
② 3 mL of LB containing Amp, Kan and 30 microL of 500 microM arabinose (final concentration of arabinose is 5 microM)
③ 3 mL of LB containing Amp, Kan and 30 microL of 1 mM arabinose (final concentration of arabinose is 10 microM)
④ 3 mL of LB containing Amp, Kan and 30 microL of 2 mM arabinose (final concentration of arabinose is 20 microM)
※ As for C and D, the suspension were added only in medium ① and ④.
12. Incubate the samples at 37 ℃ for 6 hours, shaking at 180 rpm. (Measure the OD590 of all the samples every hour.)
13. After the incubation, take the samples, and centrifuge at 9000x g, 1min, 4℃.
14. Remove the supernatant.
15. Add 1 mL of filtered PBS (phosphate-buffered saline) and suspend. (The ideal of OD is 0.3)
16. Dispense all of each suspension into a disposable tube through a cell strainer.
17. Use flow cytometer to measure the fluorescence of GFP. (We used BD FACSCaliburTM Flow Cytometer of Becton, Dickenson and Company.)

Results
Fig. 6. The histograms of the samples measured by flow cytometer

Discussion

We tried to confirm that fim switch is predominantly inverted in the presence of FimE(wild-type) by using GFP as a reporter, under 4 different concentrations of arabinose. In the medium with 0 M arabinose, we supplemented the medium with 1.0 % glucose in order to repress the leakage in the PBAD/araC promoter. Fig. 6 shows the histograms of the samples measured by the flow cytometer. In the results of the reporter cell (1), when the induction of FimE(wild-type) expression increases, the fluorescence intensity decreases. From this fact, we confirmed that the fim switch(wild-type) is inverted from [ON] state to [OFF] state by FimE(wild-type). From the result of the reporter cell (2), even when the expression amount of FimE(wild-type) increases, the expression amount of GFP in the reporter cell (2) does not change. From this fact, we confirmed that the fim switch(wild-type) is inverted only from [ON] state to [OFF] state by FimE(wild-type). From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the fim switch(wild-type) only from [ON] state to [OFF] state.

The results of Positive control 1 and Negative control 1 confirmed that the endogenous FimB and FimE did not invert our fim switch(wild-type). Also, the result of Positive control 2 and Negative control 2, indicates that the expression of FimE(wild-type) do not affect GFP expression.

Supplemental experiments

Assay protocol

1. After the assay of “Arabinose dependent FimE expression”, miniprep cell culture ((1)-①, (1)-③, (2)-① and (2)-③) of leftover as here.
(https://parts.igem.org/Help:Protocols/Miniprep) 2. Turn on water bath to 42℃.
3. Take competent DH5alpha strain from -80℃ freezer and leave at rest on ice.
4. Add 3 µl of each plasmids in a 1.5 ml tube.
5. Put 25 µl competent cell into each 1.5 ml tubes with plasmid.
6. Incubate on ice for 15 min.
7. Put tubes with DNA and competent cells into water bath at 42℃ for 30 seconds.
8. Put tubes back on ice for 2 minutes.
9. Add 125 µl of SOC medium. Incubate tubes for 30 minutes at 37℃.
10. Make a 1:5 dilution in 150 µl of fresh SOC medium.
11. Spread about 100 µl of the resulting culture of LB plate containing kanamycin.
12. Incubate LB plate for 14-15 hours at 37℃.
13. Set the plate reader to measure GFP.
14. Scan the each plates with the plate reader. (We used FujiFilm FLA-5100 Fluorescent Image Analyzer from FUJIFilm Life Science.)
15. Analyze the scanning data by changing the scale type (Bezier) and adjusting the range. (We analyzed by using the software, Multi Gauge ver. 2.0 from FUJIFilm Life Science.)
16. Counted out the all colonies and those with fluorescence.
17. Prepare three overnight cultures for each sample in 3 mL of LB medium containing kanamycin (30 microg / mL) shaking at 180 rpm for 12h.
18. Miniprep each samples and ask DNA sequencing of each samples for Biomaterial Analysis Center, Technical Department.

Results
Fig. 7. The histograms of the samples measured by flow cytometer

Fig. 8. The histograms of the samples measured by flow cytometer

Discussion

We counted out the all colonies and those with fluorescence. In the results of the reporter cell (1), when inducing the expression of FimE(wild-type), the percentage of [ON] state decreased dramatically. On the other hand, from the results of the reporter cell (2), when inducing the expression of FimE(wild-type), the percentage of [ON] state remained being small. From the results of the two reporter cells (1) and (2), we successfully confirmed that FimE(wild-type) inverts the fim switch(wild-type) predominantly from [ON] state to [OFF] state. (Fig.7). This result was consistent with the histograms (Fig.6.).Also, we incubated the colonies with fluorescence and those without fluorescence. We minipreped cell culture. Sequence complementarity in the specific region of the switch shows intended inversion of the switch from [ON] state to [OFF] state in all sample (Fig.8.).

For more information, see [http://2015.igem.org/Team:Tokyo_Tech/Project our work in Tokyo_Tech 2015 wiki].

More information

For more information, see http://2015.igem.org/Team:Tokyo_Tech/Project Our work in Tokyo_Tech 2015 wiki, http://2015.igem.org/Team:Tokyo_Tech/Experiment/ssrA_tag_degradation_assay About ssrA-tag, http://2015.igem.org/Team:Tokyo_Tech/Experiment/Overview_of_fim_inversion_system About ''fim'' inversion system

Applications of BBa_K1632011

User Reviews

UNIQ9f4ff8e201c628a7-partinfo-00000000-QINU UNIQ9f4ff8e201c628a7-partinfo-00000001-QINU