Difference between revisions of "Part:BBa K1758100"

Line 43: Line 43:
 
         </ul>
 
         </ul>
 
     </ul>  
 
     </ul>  
 +
 +
 +
<h2> Characterization </h2>
 +
 +
For characterization experiments, please see <a href="https://parts.igem.org/Part:BBa_K1758101">BBa_K1758101</a>, <a href="https://parts.igem.org/Part:BBa_K1758102">BBa_K1758102</a> and <a href="https://parts.igem.org/Part:BBa_K1758106">BBa_K1758106</a>. As this sequence was frequently used in our project, you can have a look at our <a href="http://2015.igem.org/Team:Bielefeld-CeBiTec">wiki</a>.
  
  

Revision as of 23:54, 18 September 2015

Translation enhancing 5-UTR containing g10-L RBS

This sequence contains a 5' untranslated region (5'-UTR) and a strong ribosomal binding site from bacteriophage T7, named g10-L. This sequence greatly enhances translation of a following gene. The enhancing effect relies on the regulation of mRNA binding to and release of the ribosome S30 subunit (for details see [http://www.ncbi.nlm.nih.gov/pubmed/2676996 Olins et al. 1989] and [http://www.ncbi.nlm.nih.gov/pubmed/23927491 Takahashi et al. 2013]).

g10-L is a strong RBS in E. coli but also well suited for foreign gene expression ([http://www.nature.com/nbt/journal/v9/n5/abs/nbt0591-477.html Rangwala et al. 1991]).


Usage and Biology

This part includes a RBS and a translation enhancing sequence. It improves the expression of a following gene when cloned in front of it compared to other RBS, for example B0034. The sequence of this part is derived from Olins et al. 1989 and ribosome binding analysis from Takahashi et al. 2013.

Design considerations

5' untranslated region
The sequence at a glance

  • These are the features of this sequence:
    • AATAATTTTGTTTTAACTTTAA
    • poly-A-spacer
      • With kinetic studies, Takahashi et al. showed that a spacer between the epsilon motive and the RBS improves the translation rate in vitro. This works when the spacer does not interact with the 30S subunit of the ribosome, which is the case for example for an all-adenine spacer (Takahashi et al. 2013). They further determined a 10-A-spacer as suitable when using E. coli S30 extracts instead of the PURE system.
    • GAAGGAG
    • AATAATCT
      • According to Lentini et al. 2013, the sequence composition between RBS and start codon affects the expression level of the following gene. An AT-rich region gives the best results, whereas expression is lower with the biobrick scar TACTAGAG for example (Lentini et al. 2013)

    Characterization

    For characterization experiments, please see BBa_K1758101, BBa_K1758102 and BBa_K1758106. As this sequence was frequently used in our project, you can have a look at our wiki.


    Sequence and Features


    Assembly Compatibility:
    • 10
      COMPATIBLE WITH RFC[10]
    • 12
      COMPATIBLE WITH RFC[12]
    • 21
      COMPATIBLE WITH RFC[21]
    • 23
      COMPATIBLE WITH RFC[23]
    • 25
      COMPATIBLE WITH RFC[25]
    • 1000
      COMPATIBLE WITH RFC[1000]