Difference between revisions of "Part:BBa K1602017"
Line 11: | Line 11: | ||
<h1><small>D</small>-xylonic acid producing operon</h1> | <h1><small>D</small>-xylonic acid producing operon</h1> | ||
− | <small>D</small>-Xylose is a monosaccharide belonging to the aldopentose family. It was recently shown that the <small>D</small>-xylose dehydrogenase <i>xylB</i> from <i>Caulobacter crescentus</i> can convert <small>D</small>-xylose to <small>D</small>-xylonolactone. This can react spontaneously or through the catalysation of <i>xylC</i> to <small>D</small>-xylonic acid. In <i>E. coli</i> <small>D</small>-xylonic acid can be further metabolized to ethyleneglycol.(1) | + | <small>D</small>-Xylose is a monosaccharide belonging to the aldopentose family. It was recently shown that the <small>D</small>-xylose dehydrogenase <i>xylB</i> from <i>Caulobacter crescentus</i> can convert <small>D</small>-xylose to <small>D</small>-xylonolactone. This can react spontaneously or through the catalysation of <i>xylC</i> to <small>D</small>-xylonic acid. |
+ | <br> | ||
+ | <br> | ||
+ | In <i>E. coli</i> <small>D</small>-xylonic acid can be further metabolized to ethyleneglycol by the enzymes yjhG <a href="https://parts.igem.org/Part:BBa_K1602012">BBa_K1602012</a> yagE <a href="https://parts.igem.org/Part:BBa_K1602011">BBa_K1602011</a> and yqhD <a href="https://parts.igem.org/Part:BBa_K1602013">BBa_K1602013</a> which are already present in this host.(1) | ||
<br> | <br> | ||
Revision as of 22:13, 18 September 2015
D-xylonic acid producing operon
D-Xylose is a monosaccharide belonging to the aldopentose family. It was recently shown that the D-xylose dehydrogenase xylB from Caulobacter crescentus can convert D-xylose to D-xylonolactone. This can react spontaneously or through the catalysation of xylC to D-xylonic acid.In E. coli D-xylonic acid can be further metabolized to ethyleneglycol by the enzymes yjhG BBa_K1602012 yagE BBa_K1602011 and yqhD BBa_K1602013 which are already present in this host.(1)
Usage
This part is a composite of two coding genes with strong RBS (BBa_B0034). The transcription is controlled by a T7 promotor (BBa_I719005).
We used this operon to investigate possible production of ethylene glycol in E. coli.
|
|
Figure 2 |
Results
|
|
Figure 3 Scan of the PAGE containing from left to right a marker (M; Protein Marker III AppliChem), the positive sample (1) and a negative control (2). The picture was cropped and edited for clarification purposes.
|
Figure 4 Plot of the gel lanes based on contrast analyses - created with ImageJ
|
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
References
1. Liu H, Ramos KR, Valdehuesa KN, Nisola GM, Lee WK, Chung WJ. Biosynthesis of ethylene glycol in Escherichia coli. Appl Microbiol Biotechnol. 2013;97(8):3409-17.
2. Toivari MH, Nygard Y, Penttila M, Ruohonen L, Wiebe MG. Microbial D-xylonate production. Appl Microbiol Biotechnol. 2012;96(1):1-8.