Difference between revisions of "Part:BBa K1745001:Design"

(Design Notes)
(Design Notes)
Line 7: Line 7:
  
 
===Design Notes===
 
===Design Notes===
KaiB and KaiC are in reverse direction of KaiA to maximize the efficiency of the double terminator Part:BBa_B0014. In vitro analysis of the Kai system found that the robustness of the oscillator was sensitive to KaiA:KaiC stoichiometry. In order to investigate this ratio, KaiA expression is driven under an L-rhamnose inducible promoter Part BBa_K914003 while KaiB and KaiA are driven under a constitutive promoter Part BBa_J23100.
+
KaiB and KaiC are in reverse direction of KaiA to maximize the efficiency of the double terminator Part:BBa_B0014.
  
 
===Source===
 
===Source===

Revision as of 20:38, 18 September 2015


KaiABC Oscillator


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 3014
    Illegal NheI site found at 3037
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 410
    Illegal XhoI site found at 477
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 2945
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 540


Design Notes

KaiB and KaiC are in reverse direction of KaiA to maximize the efficiency of the double terminator Part:BBa_B0014.

Source

The KaiABC circadian oscillator is endogenous to the cynanobacterial species Synechococcus elongatus.

References

Chen, A. H., Lubkowicz, D., Yeong, V., Chang, R. L., & Silver, P. a. (2015a). Transplantability of a circadian clock to a noncircadian organism. Science Advance, 1(5), 1–6. http://doi.org/10.1126/sciadv.1500358

Nakajima, M., Imai, K., Ito, H., Nishiwaki, T., Murayama, Y., Iwasaki, H., … Kondo, T. (2005). Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science (New York, N.Y.), 308(5720), 414–415. http://doi.org/10.1126/science.1108451

Nakajima, M., Ito, H., & Kondo, T. (2010). In vitro regulation of circadian phosphorylation rhythm of cyanobacterial clock protein KaiC by KaiA and KaiB. FEBS Letters, 584(5), 898–902. http://doi.org/10.1016/j.febslet.2010.01.016

Pattanayak, G., & Rust, M. J. (2014). The cyanobacterial clock and metabolism. Current Opinion in Microbiology, 18(1), 90–95. http://doi.org/10.1016/j.mib.2014.02.010

Rust, M. J., Markson, J. S., Lane, W. S., Fisher, D. S., & O’Shea, E. K. (2007). Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science (New York, N.Y.), 318(5851), 809–812. http://doi.org/10.1126/science.1148596

Taniguchi, Y., Takai, N., Katayama, M., Kondo, T., & Oyama, T. (2010). Three major output pathways from the KaiABC-based oscillator cooperate to generate robust circadian kaiBC expression in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(7), 3263–3268. http://doi.org/10.1073/pnas.0909924107