Difference between revisions of "Part:BBa K1470005"

Line 5: Line 5:
 
<h2>Usage and Biology</h2>
 
<h2>Usage and Biology</h2>
 
<p> The engineered PDZ domain is a globuar protein domain of 80 - 90 amino acids wich has an enhanced interaction with other proteins. Normally PDZ domains bind to a short region at the C-terminus of other proteins but there are some proteins which recognize internal sequence motifs of target proteins through a single binding site on the domains [1][2]. There are more over 1000 known proteins containing this domain in eucaryotes and bacteria but just a few examples are shown in archea [3].<br>
 
<p> The engineered PDZ domain is a globuar protein domain of 80 - 90 amino acids wich has an enhanced interaction with other proteins. Normally PDZ domains bind to a short region at the C-terminus of other proteins but there are some proteins which recognize internal sequence motifs of target proteins through a single binding site on the domains [1][2]. There are more over 1000 known proteins containing this domain in eucaryotes and bacteria but just a few examples are shown in archea [3].<br>
ePDZ is a crucial part of the blue light-inducible expression system. It is able to bind to the J-alpha-helix of the LOV2 domain. The principle of the light-induced expression is explained <a href="https://parts.igem.org/wiki/index.php?title=Part:BBa_K1150005">here</a> [4].  
+
ePDZ is a crucial part of the blue light-inducible expression system. It is able to bind to the J-alpha-helix of the LOV2 domain. The principle of the light-induced expression is explained <a href="https://parts.igem.org/wiki/index.php?title=Part:BBa_K1150005">here</a> [4].
 
</p><br>
 
</p><br>
 +
<figure><img src="https://static.igem.org/mediawiki/2014/4/4f/Freiburg2014_results_blue_light_system_different_illuminations_seap.png" width="640px" heigth="480px">
 +
 +
<figcaption>
 +
<small><p><b>Figure 4: Efficiency of the blue light system using different time intervals of illumination.</b> To test the efficiency of the light system, SEAP expression after illumination was determined. The SEAP assay was performed 24 hours after light exposure. Cells were incubated with blue light for 1 hour, 2.5 hours and 5 hours.</p><a href="http://2014.igem.org/Team:Freiburg/Results/Light_system">More information</a></small>
 +
</figcaption>
 +
</figure>
 +
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 22:25, 2 November 2014

engineered PDZ domain (ePDZ)

Usage and Biology

The engineered PDZ domain is a globuar protein domain of 80 - 90 amino acids wich has an enhanced interaction with other proteins. Normally PDZ domains bind to a short region at the C-terminus of other proteins but there are some proteins which recognize internal sequence motifs of target proteins through a single binding site on the domains [1][2]. There are more over 1000 known proteins containing this domain in eucaryotes and bacteria but just a few examples are shown in archea [3].
ePDZ is a crucial part of the blue light-inducible expression system. It is able to bind to the J-alpha-helix of the LOV2 domain. The principle of the light-induced expression is explained here [4].


Figure 4: Efficiency of the blue light system using different time intervals of illumination. To test the efficiency of the light system, SEAP expression after illumination was determined. The SEAP assay was performed 24 hours after light exposure. Cells were incubated with blue light for 1 hour, 2.5 hours and 5 hours.

More information

References

[1] Cowburn D (December 1997). „Peptide recognition by PTB and PDZ domains“. Curr. Opin. Struct. Biol. 7 (6): 835–838
[2] Giallourakis C, Cao Z, Green T, Wachtel H, Xie X, Lopez-Illasaca M, Daly M, Rioux J, Xavier R. A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genome Res. 2006;16:1056–1072.
[3] Doyle DA, Lee A, Lewis J, Kim E, Sheng M, MacKinnon R (June 1996). „Crystal structures of a complexed and peptide-free membrane protein-binding domain: molecular basis of peptide recognition by PDZ“. Cell 85 (7): 1067–1076
[4] MUELLER, K., ENGESSER, R., TIMMER, J., ZURBRIGGEN, M. D., Weber W.: Orthogonal Optogenetic Triple-Gene Control in Mammalian Cells. ACS Synth. Biol., Article ASAP


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 424
  • 1000
    COMPATIBLE WITH RFC[1000]