Difference between revisions of "Part:BBa K1442040"
Line 3: | Line 3: | ||
− | Regulating the expression of a protein can be achieved through repressive elements; we have the MS2 and MS2 hairpin, which regulate the production of RNA Dependent RNA polymerase (RdRp). As RdRp is fused with MS2 through a P2A linker, an indefinite increase in RdRp production is rate-limited by MS2 production. MS2 is able to bind to the MS2 hairpin sequence, also rate-limiting RdRp production, which in turn regulates the whole replicon system. The iGEM community can benefit from a regulation system, in which MS2 can be fused to a protein of interest to regulate its expression. If the fusion protein is non-functional, engineering restriction sites in the P2A linker and site specific ligation reconstitutes RdRp without the MS2 hairpin. The part derives from Auslander et al, which showed that the MS2 protein-box relationship can be designed for use in synthetic biology to create programmable single-cell mammalian biocomputers with simple expression logic, increasing the complexity of an information processing system without researcher input. | + | Regulating the expression of a protein can be achieved through repressive elements; we have the MS2 and MS2 hairpin, which regulate the production of RNA Dependent RNA polymerase (RdRp). As RdRp is fused with MS2 through a P2A linker, an indefinite increase in RdRp production is rate-limited by MS2 production. MS2 is able to bind to the MS2 hairpin sequence, also rate-limiting RdRp production, which in turn regulates the whole replicon system. The iGEM community can benefit from a regulation system, in which MS2 can be fused to a protein of interest to regulate its expression. If the fusion protein is non-functional, engineering restriction sites in the P2A linker and site specific ligation reconstitutes RdRp without the MS2 hairpin. The part derives from Auslander et al, 2012, which showed that the MS2 protein-box relationship can be designed for use in synthetic biology to create programmable single-cell mammalian biocomputers with simple expression logic, increasing the complexity of an information processing system without researcher input. |
Revision as of 13:32, 31 October 2014
MS2 bacteriophage coat protein
Regulating the expression of a protein can be achieved through repressive elements; we have the MS2 and MS2 hairpin, which regulate the production of RNA Dependent RNA polymerase (RdRp). As RdRp is fused with MS2 through a P2A linker, an indefinite increase in RdRp production is rate-limited by MS2 production. MS2 is able to bind to the MS2 hairpin sequence, also rate-limiting RdRp production, which in turn regulates the whole replicon system. The iGEM community can benefit from a regulation system, in which MS2 can be fused to a protein of interest to regulate its expression. If the fusion protein is non-functional, engineering restriction sites in the P2A linker and site specific ligation reconstitutes RdRp without the MS2 hairpin. The part derives from Auslander et al, 2012, which showed that the MS2 protein-box relationship can be designed for use in synthetic biology to create programmable single-cell mammalian biocomputers with simple expression logic, increasing the complexity of an information processing system without researcher input.
Usage and Biology
The MS2 coat-protein was included in our replicon.
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 255
- 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 255
- 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 255
- 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 255
- 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 255
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 292