Difference between revisions of "Part:BBa K1383002"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K1383002 short</partinfo> | <partinfo>BBa_K1383002 short</partinfo> | ||
+ | |||
+ | [[Image:Negative-pmev4-mcherry-circuit.png|none|500px|thumb|<b>UGA-Georgia 2014</b> Figure 3: Specific sequence for the 'native' RBS. The region labeled 'Linker' is a few random base pairs that provide the ability to hybridize a gene of interest to the RFP reporter, mCherry. The figure is not drawn to scale.]] | ||
In an effort to expand synthetic biology research for Archaea, we have developed protein expression tools to facilitate fluorescence mediated detection of proteins. For our 2014 project we present 3 new BioBrick parts that iGEMers can use readily. All three of our parts are BioBrick compatible. Specifically, we constructed tools consisting of native/ synthetic Methanococcus RBS site(s) upstream of a gene encoding red fluorescent protein-mCherry. Prior to cloning the mCherry gene was codon optimized for expression in Methanoccocus (also, ensuring BioBrick compatibility in the design considerations). | In an effort to expand synthetic biology research for Archaea, we have developed protein expression tools to facilitate fluorescence mediated detection of proteins. For our 2014 project we present 3 new BioBrick parts that iGEMers can use readily. All three of our parts are BioBrick compatible. Specifically, we constructed tools consisting of native/ synthetic Methanococcus RBS site(s) upstream of a gene encoding red fluorescent protein-mCherry. Prior to cloning the mCherry gene was codon optimized for expression in Methanoccocus (also, ensuring BioBrick compatibility in the design considerations). |
Revision as of 00:40, 28 October 2014
BBa_K1383001 (mCherry- Theoretical weakest RBS)
In an effort to expand synthetic biology research for Archaea, we have developed protein expression tools to facilitate fluorescence mediated detection of proteins. For our 2014 project we present 3 new BioBrick parts that iGEMers can use readily. All three of our parts are BioBrick compatible. Specifically, we constructed tools consisting of native/ synthetic Methanococcus RBS site(s) upstream of a gene encoding red fluorescent protein-mCherry. Prior to cloning the mCherry gene was codon optimized for expression in Methanoccocus (also, ensuring BioBrick compatibility in the design considerations). The BioBrick part- BBa_K1383002 consists of the theoretical weakest Methanococcus RBS site upstream of the mCherry gene. This fragment was inserted into pSB1C3 plasmid backbone using EcoRI and PstI restriction enzymes.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]